Early Age Reactions of Sulphate Phases that Contribute to Early Stiffening of Hydraulic Cements

Terry Ramlochan R.D. Hooton

University of Toronto

Introduction

- Investigate if there are mineralogical reasons that can lead to early stiffening of hydrated portland cements.
 - Understand the reactions (mineralogical changes) that occur with the various forms of sulphate in portland cements
 - Composition by XRF does not give information about mineralogy
 - XRD used to identify mineral phases present before and after hydration that may contribute to early stiffening → better correlation with performance
- Number of different sulphate minerals in portland cement:
 - Alkali sulphates (arcanite and aphthitalite), calcium sulphates (gypsum, hemihydrate, beta-anhydrite, gamma-anhydrite), and calcium langbeinite
 - Sulphate minerals have different solubilities

Introduction

- Early stiffening:
 - Flash set development of stiffness with evolution of considerable heat, where plasticity cannot be regained upon mixing without additional water (more severe)
 - False set development of stiffness without much heat evolution, where plasticity may be regained by further mixing without additional water (less severe)
 - In practice the main issue is **placing** and **finishing** of the concrete
- A number of cements were investigated
 - Had poor 'finishability' or early stiffening reported in the field
 - Gave unacceptable results when tested according to ASTM C 359 (Standard Test Method for Early Stiffening of Hydraulic Cement - Mortar Method)

Experimental methods

- XRD with Rietveld whole pattern fitting to indentify/quantify mineral components of interest, in the anhydrous cement and after hydration (e.g., 3-15 min, 4-6 hr, 24 hr).
 - XRD sample preparation (on hydrated pastes):
 - Mixed a cement paste at w/cm of 0.3 for 90 sec
 - Allowed to hydrate for 3 min (or 5 min, etc.)
 - Place about 5 g of cement paste in 50 mL vial, add 45 mL of acetone, and shake for 2 min (to stop hydration)
 - Centrifuge to separate acetone
 - Grind with mortar and pestle (<38 μm)
 - XRD performed using Cu-Kα radiation (λ of 1.541874 Å)
 - Rietveld analysis done with PANalytical X'Pert Highscore Plus 2.1, using initial crystal structures from the ICSD

Experimental methods

- ASTM C 359 Standard Test Method for Early Stiffening of Hydraulic Cement → mortar penetration test
- Isothermal calorimetry using TAMAir conduction calorimeter to determine how the various forms of sulphate affect the heat evolution
 - Cement pastes mixed at w/c of 0.4 for 90 sec
 - 23°C for 7 days (168 h)

Example 1 – Too much hemihydrate

- Cement where it was reported there was increased water demand for mixing, false setting or early stiffening tendency, issues with handling and placing
- Cement had ~3.6% SO₃, low alkali sulphates (0.52% Na₂O_e), 1% gypsum, and 4.1% hemihydrate
- Too much hemihydrate (dehydration of gypsum)

Example 1 – Too much hemihydrate

- Upon hydration all hemihydrate disappeared, but gypsum was precipitated in the cement paste
- Solubility of hemihydrate (or rate of) is greater than gypsum
 - Pore solution becomes super-saturated wrt gypsum
 - □ $CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$
 - Gypsum crystals are tabular causes thickening of cement

Example 1 – Too much hemihydrate

- Upon hydration all hemihydrate disappeared, but gypsum was precipitated in the cement paste
- Solubility of hemihydrate (or rate of) is greater than gypsum
 - Pore solution becomes super-saturated wrt gypsum
 - □ $CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$
 - Gypsum crystals are tabular causes thickening of cement paste

Counts Cement paste - hydrated 5 min (w/cm = 0.3)

- Cement when tested in accordance with ASTM C 359 (mortar penetration test) indicated there could be issues with early stiffening
- Cement had 3.4% SO₃, relatively high alkali sulphates (1.14% Na₂O_e), 2.6% gypsum, 0.9% hemihydrate, 0.8% anhydrite

ASTM C 359 (mortar method)

Mixing Water	191	mL	(180 mL)
Initial penetration	46	mm	
5-min penetration	33	mm	
8-min penetration	19	mm	
11-min penetration	11	mm	
Remix penetration	24	mm	
Early Stiffening Amount	35	mm	
Average Early Stiffening Rate	4.6	mm/min	(lower is better)
Early Stiffening Recovery	52	%	(higher is better)

- Cement when tested in accordance with ASTM C 359 (mortar penetration test) indicated there could be issues with early stiffening
- Cement had 3.4% SO₃, relatively high alkali sulphates (1.14% Na₂O_e), 2.6% gypsum, 0.9% hemihydrate, 0.8% anhydrite

- Hemihydrate consumed; no precipitation of gypsum
- Formation of syngenite (~3%) upon hydration (from dissolution of calcium sulphates and potassium sulphates)

 - Less soluble than anhydrite (removal of sulphate from solution)
 - Syngenite crystals are prismatic to acicular (spherulitic)

- Hemihydrate consumed; no precipitation of gypsum
- Formation of syngenite (~3%) upon hydration (from dissolution of calcium sulphates and potassium sulphates)

 - Less soluble than anhydrite (removal of sulphate from solution)
 - Syngenite crystals are prismatic to acicular (spherulitic)

Shen et al., J Dent Res (1981)

Example 3 – Calcium langbeinite

- Clinkers high in K₂O and SO₃ may contain calcium langbeinite (K₂SO₄·2CaSO₄)
- Cement reported to have problems with finishing
- Cement had 2% Ca-langbeinite, high alkali sulphates

Example 3 – Calcium langbeinite

- Upon hydration Ca-langbeinite is completely consumed
- All of the hemihydrate and half of gypsum is consumed
- 3.8% syngenite formed

Calcium langbeinite & calcium sulphates

- Calcium langbeinite is considered an effective set-controlling agent (very water soluble)
- Clinker with 2.6% SO₃ (2.4% Ca-langbeinite) was interground with gypsum, hemihydrate, or beta-anhydrite
 - The more soluble the calcium sulphate source, the greater the tendency for early stiffening → more syngenite formed early

	Clinker (2.6% SO ₃)	+ 2.6% Gypsum	+ 2.4% Hemihydrate	+ 2.0% Anhydrite	
Initial penetration	49	49	49	49	mm
5-min penetration	49	45	21	48	mm
8-min penetration	49	14	9	48	mm
11-min penetration	49	9	4	30	mm
Remix penetration	49	49	49	49	mm
Early Stiffening Amount	0	40	45	19	mm
Average Early Stiffening Rate	0.0	4.7	6.6	2.2	mm/min
Early Stiffening Recovery	100	100	100	100	%
Syngenite (3 minutes)	1.4	3	3.4	2.2	%

ASTM C 359 (mortar method)

Isothermal calorimetry (high SO₃ clinker)

- 2.6% SO₃ clinker with addition of gypsum, hemihydrate, or betaanhydrite (~3.7% total SO₃)
 - Initial peak only slightly higher with hemihydrate or gypsum
 - Addition of calcium sulphate slightly delays main silicate peak

Isothermal calorimetry (low SO₃ clinker)

- 0.95% SO₃ clinker with addition of gypsum, hemihydrate, or betaanhydrite (~3.4% total SO₃)
 - Addition of calcium sulphate significantly lowers initial peak
 - Addition of calcium sulphate significantly accelerates main silicate peak

Summary

- Too much hemihydrate (from dehydration of gypsum) can cause early stiffening due to precipitation of gypsum upon hydration, and can increase the early heat of hydration
- High levels of potassium sulphates can contribute to formation of syngenite upon hydration causing early stiffening
- Calcium langbeinite in the cement can lead to formation of syngenite upon hydration; with the addition of a rapidly soluble calcium sulphate, syngenite formation, and hence, early stiffening increases
- Calcium sulphates have differing affects on early hydration when added to clinkers with low SO₃ versus high SO₃