HYDRATION AND PERCOLATION

GEORGE SCHERER^A, JOHN QUINTANILLA^B, SULAPHA PEETHAMPARAN^C, JIE ZHANG^A, EMILY WEISSINGER^A, SALVATORE TORQUATO^A

> ^A PRINCETON UNIVERSITY ^B UNIVERSITY OF NORTH TEXAS ^C CLARKSON UNIVERSITY

HYDRATION AND PERCOLATION

- Percolation & Setting
- Characterizing the setting point
 - Vicat needle & acoustic velocity
 - Chemical shrinkage
 - DOH by TGA
- Cherry pit model

PERCOLATION & SETTING

• If setting corresponds to a percolation threshold, it should occur at fixed DOH

w/c = 0.38 w/c = 0.70

PERCOLATION & SETTING

• If setting corresponds to a percolation threshold, it should occur at fixed DOH

w/c = 0.38 w/c = 0.70Percolated Not

ACOUSTIC VELOCITY

- Initial velocity ↔ compressibility of water
- Velocity rises at percolation threshold

Based on design by D.G. Aggelis & T.P. Philippidis, NDT&E International 37 (2004) 617–631

VICAT & ACOUSTIC

- Initial setting found by Vicat needle corresponds to initial rise in velocity
 - Initial percolation of solid phase

MEASURING CHEMICAL SHRINKAGE

 New method for quantifying volume change by measuring change in hydrostatic head

มามีสายเป็นแปลเมืองเป็นแปลเมืองเป็นเป็นเป็นเป็นเป็นเป็น

CHILIOSI IISt

MODELING SHRINKAGE

- Use Avrami-Cahn model, proposed by Thomas
- Near setting point, A-C-T model reduces to

$$X \approx \frac{\pi}{3} O_v^B I_B G^3 t^4 \equiv \frac{\pi}{3} k_B^4 t^4$$

• If setting time represents percolation,

$$X_{set} \approx \frac{\pi}{3} k_B^4 t_{set}^4$$
$$k_B \propto 1/t_{set}$$

MODELING SHRINKAGE

 Shrinkage & setting data confirm that setting occurs at fixed DOH

MEASURING DOH

- Solvent quenching yields artificially high DOH
 - Best solvents are i-PrOH & THF
 - Best method is freeze-drying

MEASURING DOH

- Solvent quenching yields artificially high DOH
 - Best solvents are i-PrOH & THF
 - Best method is freeze-drying

DOH VS ÅGE

• At initial set, DOH $\approx 4\%$ (w/c = 0.35)

DOH AT INITIAL SET

 For Class H cement, w/c = 0.35, DOH at initial set is ~0.04 for all T

DOH AT INITIAL SET

 For Class H cement, w/c = 0.35, DOH at initial set is ~0.04 for all T

DOH VERSUS W/C

- Satisfactory percolation model must explain DOH at initial set
- Test Cherry Pit (or, hard core-soft shell) model developed by Torquato
 - core = clinker, shell = hydrates
 - Provides *analytical expression* for DOH at percolation threshold

CHERRY PIT MODEL

• Radius ratio of hard core to soft shell is λ

- Shell is hydration product
- Percolation is setting point

S. Torquato, Random Heterogeneous Media, (Springer, New York, 2002)

CHERRY PIT MODEL

- Rigid spheres ($\lambda = 1$) form rigid packing when volume fraction reaches $v \approx 0.64$
- Overlapping spheres ($\lambda = 0$) form network at $v \approx 0.29$
- What is thickness of hydration layer at setting point?

S. Torquato, Random Heterogeneous Media, (Springer, New York, 2002)

CHERRY PIT & HYDRATION

- Layer thickness vs Degree of hydration, α
 - Core shrinks as hydration proceeds

MODEL PREDICTION

- Original model assumes uniform particle size
 - Requires too much hydration for setting
 - Will fines enable earlier setting?

SIZE DISTRIBUTION

 Introducing particle size distribution *increases* predicted DOH at percolation threshold

ROLE OF ÅGGREGATION

- Simulations assume that particles are initially dispersed ("equilibrated")
- Particles in paste actually slightly aggregated
 - Reduces interparticle distance
 - Reduces DOH needed to percolate
 - Accounts for poorer performance at higher w/c, where aggregation more important
- Initial aggregation can be included in model

CONCLUSIONS

- Setting corresponds to percolation
 - Corresponds to increase in acoustic velocity
 - Occurs at constant DOH for given w/c
 - DOH at initial set $\propto 1/t_{set}$
- DOH at initial set ≈ 4% at w/c = 0.35 is lower than predicted by Cherry Pit model
 - Discrepancy not from neglect of psd
 - Probably reflects neglect of agglomeration
- Next simulations will explore aggregation

ACKNOWLEDGMENT

Financial support for Sulapha Peethamparan, Emily Weissinger, and Jie Zhang provided by Halliburton (thanks to Lewis Norman & Gary Funkhouser)