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Hydration and Percolation

• Percolation & Setting

• Characterizing the setting point

• Vicat needle & acoustic velocity

• Chemical shrinkage

• DOH by TGA

• Cherry pit model



Percolation  & Setting
• If setting corresponds to a percolation 

threshold, it should occur at fixed DOH
w/c = 0.38 w/c = 0.70
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Acoustic Velocity
• Initial velocity ↔ compressibility of water

• Velocity rises at percolation threshold
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Vicat & Acoustic
• Initial setting found by Vicat needle 

corresponds to initial rise in velocity
• Initial percolation of solid phase
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Measuring Chemical 
Shrinkage

• New method for quantifying volume change 
by measuring change in hydrostatic head
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Modeling Shrinkage

• Use Avrami-Cahn model, proposed by Thomas

• Near setting point, A-C-T model reduces to

• If setting time represents percolation,
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Modeling Shrinkage

• Shrinkage & setting data confirm that 
setting occurs at fixed DOH
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Measuring DOH
• Solvent quenching yields artificially high DOH

• Best solvents are i-PrOH & THF
• Best method is freeze-drying
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Measuring DOH
• Solvent quenching yields artificially high DOH

• Best solvents are i-PrOH & THF
• Best method is freeze-drying
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DOH vs Age

• At initial set, DOH ≈ 4% (w/c = 0.35)
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DOH at Initial Set
• For Class H cement, w/c = 0.35, DOH 

at initial set is ~0.04 for all T

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 102

10oC

25oC

40oC

60oC

D
eg

re
e 

of
 H

yd
ar

ti
on

Time  ( h )

Class H, w/c=0.35

Initial set



DOH at Initial Set
• For Class H cement, w/c = 0.35, DOH 

at initial set is ~0.04 for all T
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DOH versus w/c

• Satisfactory percolation model must 
explain DOH at initial set

• Test Cherry Pit (or, hard core-soft shell) 
model developed by Torquato

• core = clinker, shell = hydrates

• Provides analytical expression for 
DOH at percolation threshold



Cherry Pit Model

• Radius ratio of hard core to soft shell is λ

• Shell is hydration
product 

• Percolation is
setting point

rc
rs

λ = rc / rs

S. Torquato, Random Heterogeneous Media,(Springer, New York, 2002)



Cherry Pit Model

• Rigid spheres (λ = 1) form rigid packing 
when volume fraction reaches v ≈ 0.64

• Overlapping spheres
 (λ = 0) form network
at  v ≈ 0.29

• What is thickness of
hydration layer at
setting point?

S. Torquato, Random Heterogeneous Media,(Springer, New York, 2002)

rc
rs

λ = rc / rs



Cherry Pit & Hydration

• Layer thickness vs Degree of hydration, α

• Core shrinks as hydration proceeds

rc
rs

λ = rc / rs
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Model Prediction

• Original model assumes uniform particle size
• Requires too much hydration for setting
• Will fines enable earlier setting?
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Size Distribution
• Introducing particle size distribution increases 

predicted DOH at percolation threshold
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Role of Aggregation

• Simulations assume that particles are initially 
dispersed (“equilibrated”)

• Particles in paste actually slightly aggregated

• Reduces interparticle distance

• Reduces DOH needed to percolate

• Accounts for poorer performance at higher 
w/c, where aggregation more important

• Initial aggregation can be included in model



Conclusions
• Setting corresponds to percolation 

• Corresponds to increase in acoustic velocity
• Occurs at constant DOH for given w/c
• DOH at initial set ∝ 1/tset 

• DOH at initial set ≈ 4% at w/c = 0.35 is lower 
than predicted by Cherry Pit model
• Discrepancy not from neglect of psd
• Probably reflects neglect of agglomeration

• Next simulations will explore aggregation
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