
Multi-core Processors and Caching - A Survey

Jeremy W. Langston and Xubin He
Electrical and Computer Engineering
Tennessee Technological University
{jwlangston21,hexb}@tntech.edu

August 1, 2007

Abstract
Multi-core processors are the industries’ cur-

rent venture into new architectures. This paper
explores what brought about this change from a
single processor architecture to having multiple
processors on a single die and some of the hur-
dles involved, and the technologies behind it. This
is different from past architectures that used mul-
tiple, physically separate processors, using multi-
ple sockets. Having each processor, or core, on
a single die allows much greater communication
speeds between the processors, among other ben-
efits. The biggest pushes for multi-core proces-
sors have been the need for multi-threading and
multitasking, security and virtualization [1], and
physical restraints such as heat generation and die
size.

These benefits do not come free. Processor
cache, the memory between the main memory and
the CPU registers, is the performance bottleneck
in most current architectures, and as such, can
have vast improvements to the overall system.
These caching methods are complex - multi-core
processor caches are even more so. This paper
will explore some of the research performed on
different caching schemes.

1 Introduction

Traditional processor architectures have
pushed the transistor count well into the hun-
dreds of millions. These transistors, nano-scale
electronic switches, can switch between on and
off (1 and 0) states billions of times in a second.
Each state and transition requires power. One
way to counteract the power consumed is to

reduce the size of the transistor. However, the
transistor can only shrink so much before the
functionality of the electronic switch breaks
down and allows current to pass improperly [2].
All of this power consumption leads to heat
production, another side-effect of high transistor
counts. Yet another side-effect of adding more
transistors is the decreasing area on the die for
placing them. These issues point toward a shift
in architectures: greater parallelism.

Computing has passed the times of batch pro-
cessing and is well into the era of multitask-
ing. On a single core processor running multi-
ple applications, the operating system acts as a
scheduler - switching contexts between the appli-
cations. This can require a complete dump of
all processor registers and possibly the cache(s),
which is costly in terms of completion time. It
is obvious that lessening the frequency of context
switching will increase the usable cycles of a pro-
cessor. One way of achieving this is by creating
more processors to distribute the load. For ex-
ample, a computer running two applications will
not need to switch contexts if there are two pro-
cessors working in parallel. This example is sim-
plistic as operating systems often take control,
running scheduling and other management tasks
in the background.

This parallelism is realized by creating mul-
tiple processors, cores, on a single die. Making
multi-core processors be effective is not without
its challenges however. In order for applications
to reap the greatest benefit from multiple cores,
the programmer must divide the application into
simultaneous threads or be done by the operating



system for multitasking. A thread is a lightweight
sub-program that shares the same memory space
as other threads under the same program process.
This notion of multi-threading is challenging rel-
atively new and isn’t yet taught to be as funda-
mental as, say, data structures. There is also an
architectural design challenge for multi-core pro-
cessors: the caching scheme to be used.

The remainder of this paper is divided as fol-
lows: section 2 gives a brief background into
multi-core architectures and cache techniques;
section 3 depicts how multi-core processors can
and are used; section 4 tells how to critically an-
alyze the designs before they are fabricated, and
after; section 5 states some of the previous and
current work being done.

2 Background
2.1 Computer Architectures

Past architectures have included multiple phys-
ically separate processors. Those architectures
fall far behind the multiple on-chip processors
due mainly to wire delay and caching techniques.
Wire delay is the time it takes for data to traverse
the physical wires. This can have a drastic ef-
fect on frequencies. As such, structures requiring
high throughput between each other are placed in
close proximity. There is also the added problem
of limited intra-processor communication pins for
multiple separate processors - a problem not seen
in multi-core processors.

2.2 Cache

Computer cache plays an intermediary role be-
tween main memory and the processor. The
objective is to lessen the number of accesses
to main memory, which are relatively slow due
to the memory type it is (e.g. double data
rate synchronous dynamic random access mem-
ory, or DDR SDRAM). Cache is made from static
RAM (SRAM), built from flip-flops, to provide
faster access times. DDR SDRAM is slower, but
cheaper. SRAM is a up to four times larger than
an equivalent DDR SDRAM module. Since cache
is typically found on-die with the processor, area
is at a premium and this decides the amount to
be included.

Cache is about having memory stored locally
for items that will be used in the near future.
To aid in finding this memory, designers begin
with locality of reference [3]. This is the idea
that memory located near previously used mem-
ory will likely be accessed. The term “near”
can be adjectified three different ways: spatially
(physical nearness), sequentially (physically right
after another), or temporally (memory reused in
the near future). This only depicts what memory
would be used. In order for cache to be effective,
there are several issues to be dealt with: initial
placement, identification, replacement, and write
strategies [3]. These have to deal with the fun-
damental cache element, a block. Changing the
block size, as well as various other changes such
as mapping, change the pertinent cache aspects:
cache hit and miss rates, miss penalties, and time
to hit [4].

A block is typically around 4 to 32 kilobytes,
but the size is up to the designer. Increasing
the block size will decrease the amount of cache
misses as more data and instructions are in each
block. However, cache schemes are a give and
take procedure. While a bigger block size de-
creases the miss rate, the miss penalty goes up.
This miss penalty is the time it takes to get a
new block from main memory into the cache, and
replace another block. The simplest way to coun-
teract this miss penalty is to increase the amount
of cache memory. This is a commonly used opti-
mization technique, but can only be done at the
cost of hardware complexity and thus more area
on the die is consumed, more power consumed,
and more heat generated. The third easiest tech-
nique is done by adding more levels of cache. This
works in the same way as main memory does for
hard drives and CPU registers do for main mem-
ory. An Intel Pentium 4 processor uses two cache
levels. Level 1, referred to as L1, is 8kB and 16kB,
while level 2, L2, is 1MB. The sizes have continu-
ally been pushed and, at the time of this writing,
an L2 size of 4MB is not uncommon. It is also
quite common to have two L1 caches per proces-
sor/core. This separates the data from the in-
structions. The L2 however is made up of both



data and instructions; hence this L2 arrangement
is referred to as unified.

Other optimization techniques can be per-
formed, but more information is needed about
cache architecture. Some techniques are straight-
forward while others are very complex. One of
the primary aspects of caches is the type of map-
ping strategy: direct, fully-associative, and set-
associative [3]. These depict how the blocks are
stored and retrieved. The CPU will make re-
quests of main memory for a particular address,
which goes through the cache. The cache must
translate this main memory address into a block
location within the cache. Without delving into
the exact details, the addresses are broken up into
2 or 3 different fields, depending on the map-
ping strategy [5]. When the data/instructions
are copied from main memory to the cache, these
fields determine where they are stored. The sim-
plest strategy is direct. Each block in main mem-
ory has exactly one and only one location in cache
it can be copied to. See figure 1 for an example.
This strategy is less costly as no searching is re-
quired. However, if thrashing occurs, when one
cache block is continually swapped between two
or more memory blocks, the overhead becomes an
issue.

Figure 1: Direct mapped cache, from L. Null

Fully-associative mapping is the opposite of di-
rect mapping in that the memory blocks can be
stored anywhere in the cache. In this way, the

entire cache must be searched for each memory
access. This requires more hardware and is thus
very costly. A combination of the two extremes,
direct and fully-associative, forms the most com-
mon mapping strategy: set-associative. Here, the
cache is broken up into separate sets. Each set is
made up of two or more blocks. A two block set-
associative mapping is referred to as 2-way, be-
cause the data retrieved from main memory can
be put in two different locations, instead of just
one. This allows the cache some flexibility and
limits the amount of thrashing that could occur.

Writing to cache from the CPU presents an-
other opportunity for optimization. There are
two simple write policies: write-through and
write-back [4][5]. During a typical write, the CPU
stores its computed data to a location in cache,
which is stored back into main memory. These
two policies differ in when they store the updated
cache contents to memory. Write-through stores
the data into the cache and then into the main
memory. Write-back stores the data in the cache,
and only writes to main memory when evicted.
A write to memory is even slower than an access.
Procrastinating the memory write until eviction
can minimize the number of memory write pro-
cedures. A more advanced write optimization in-
volves buffering the data to allow memory reads
to preceed the writes, as they are faster.

Hit Miss Miss Comp-
Technique Time Penalty Rate lexity
Larger block size - + 0
Larger cache size - + 1
Higher associativity - + 1
Multilevel caches + 2
Read priority
over writes + 1
Avoid address
translation during
cache indexing + 1

Table 1: Simple optimization techniques. From
Hennessy, Patterson.

The preceeding table presents some of the men-
tioned optimizations, as well as some others.



Cache optimization is a widely researched topic
and the different schemes are endless.

3 Uses
3.1 Servers

Servers have a direct application for multi-core
processors. A server can potentially have many si-
multaneous connections to many users. To accept
these connections, the server will either spawn a
new process or fork off a new thread. This allows
the main process/thread to continue to wait for
connections. The operating system can then allo-
cate these workloads across the available cores. It
is becoming common to have four or more cores
for server applications. This works well with long
running connections.
3.2 Consumers

The consumer market has adopted these new
processors, banking on the multi-tasking paral-
lelism granted by the multiple cores. Since the
time of Windows and it’s multi-tasking ability,
this concept has become a mainstay. It it not
uncommon to be actively running 5 or more pro-
grams, with another 50 running in the back-
ground. These applications reap direct benefit
from a multi-core architecture by either multi-
threaded programs or via scheduling by the oper-
ating system.

Multi-core processors are not limited to tra-
ditional computers. Two such examples are the
Cell processor [6][7] and NVIDIA Tesla GPU [8].
Both of these are used for graphics rendering, a
very processor intensive task. The Cell processor,
in use by the Sony Playstation 3, utilizes 8 het-
erogeneous cores. The Tesla GPU has 128 cores
and is used for high performance computing.
3.3 Virtualization

The idea of virtualization is nothing new. It
tracks back to the days of mainframes. At the
time, having many computers could not be justi-
fied either because of cost or under-usage. Now
the costs are far lower. However, one thing re-
mains to be true: under-utilization. A system
administrator can configure the computer to “vir-
tualize” its devices, or operating system, to allow
one ore more simultaneous virtual machine(s) to
use the computer as if each virtual machine (VM)

was its own computer. Doing so allows the com-
puter to be further utilized, instead of constantly
spinning in an idle loop. There are more uses than
just these for using VMs, including server con-
solidation, IT center area restrictions, dynamic
optimization, security, and hardware virtualiza-
tion for multiple parallel-running operating sys-
tems [15].

4 Analysis Techniques
In the theoretical design of an architecture, one

uses mathematical equations to verify the perfor-
mance. This is very prevalent in cache design.
Miss rates are a common metric of cache imple-
mentations; where miss rate is the ratio of misses
to memory accesses. This simple analysis is aug-
mented by involving the times associated with
miss penalties and hit times. From [4], the av-
erage memory access time (AMAT) in seconds or
clock cycles can be found by

AMAT = Hit time + (Miss rate * Miss penalty)

where hit time is the time it takes to get a mem-
ory location and miss penalty is the time in-
volved when the requested memory is not found
in the cache. Miss penalties are much larger than
hit times, as the cache must repopulate a block
with the corresponding data/instructions located
in main memory. Other equations involve con-
cepts such as out-of-order processing, multi-level
caches, etc.

The most common way to test configurations
before a complete physical implementation is via
emulation and simulation software. Basic struc-
tures are tested for functional and timing require-
ments by giving a series of test cases to simula-
tion software. This simulator will run the cases
through the compiled logic (derived from an HDL
at the hardware level). In [9], hardware pro-
totyping and testing is analyzed using a Xilinx
Virtex-II Pro FPGA. Using an FPGA as a test
bed gives great reconfigurability. Due to the com-
plexity of even a simple processor architecture,
these methods cannot be done satisfactorily as a
whole. As stated in [10], random program gener-
ators and simulation methods are used to test the
basic structures when combined. Lewin goes on



to introduce automatic architectural test program
generators to verify proper working conditions of
complex systems, such as multi-core processors.

Upon implementation, benchmarking software,
such as SPEC CPU2006 [11], is used to test the
many aspects of a processor. In the CPU2006
package, 29 different benchmarking programs test
all areas of the processor using practical applica-
tions. The results of the testing are compared
against preset standards.

5 Previous Work

Industry giants Intel and AMD started ship-
ping their multi-core processors during 2006 to
the user and server markets. The AMD Athlon 64
FX dual-core processor has two L1 caches, data
and instruction, and one L2 cache, unified, for
each core [12] (see Figure 2). Intel uses a shared
L2 cache in what is referred to as the “Advanced
Smart Cache” [13] (see Figure 3). This implemen-
tation dyamically shares its second level cache to
utilize 100% of the available cache, thus reduc-
ing the cache misses and increasing the perfor-
mance. For a further breakdown of the differences
between these processors, see table 2.

Figure 2: AMD Athlon 64 FX Architecture. Im-
age from AMD.

A similar concept [14] proposes is a non-
uniform cache architecture to share cache be-
tween cores dynamically. This architecture ad-
dresses the cache pollution that occurs when one
core uses cache space unnecessarily and intrudes
on another core’s space. The proposal is done
with a quad-core processor and three levels of
cache. The third level, L3, is partly shared and
partly private. Each core is allotted a certain
amount of space in L3 to be private and can-

Figure 3: Intel Core Duo Architecture. Image
from Intel.

not be intruded upon. The remaining cache is
shared between all four cores. There are three
different events that occur in the cache: a hit oc-
curs in the private L3 - a normal hit; a hit occurs
in the shared L3 - missed in private, found in
shared, moved to private; and a cache miss - in-
serted into the private cache from main memory.
The proposed Sharing Engine determines the best
cache allocation and partitioning, the sharing of
cache space, and the replacement policy. Natu-
rally there is an inherent cost associated with the
increased complexity of such an architecture.

Other more exotic research has been done in-
volving virtual machines on multi-core proces-
sors. In [15], the idea of specializing the cores for
virtual machines. The heterogeneity can be ob-
served from subtle differences like sizes of cache,
or bigger differences such as instruction sets and
operating frequencies. They proposed two main
designs: a single virtual machine core shared by
all other general-purpose and specialized cores
(for system virtualization); or each general pur-
pose core can have a virtual-machine-specific core
(for process virtualization). The concern with
this architecture was with the context switching
overhead from swapping traces.

System security and dependability is addressed
in [16] with an “integrated framework for depend-
able and revivable architectures”, or INDRA. The
application is for recovery of vital network ser-



CPU # of
Processor Speed Cores L1 L2 Technologies
Intel Core 2 Duo Up to 2 Data & Inst. for each core: 4MB, unified, Advanced
E6850 3GHz 32kB, private, 8-way shared, 16-way Smart Cache
Intel Core 2 Duo Up to 2 Data & Inst. for each core: 2MB, unified, Advanced
E4500 2.2GHz 32kB, private, 8-way shared, 8-way Smart Cache
AMD Althlon 64 X2 Up to 2 Data & Inst. for each core: 2MB, unified,
and Opteron 3GHz 64kB, private, 2-way private, 16-way

Table 2: Features of some multi-core processors and their caches. Data collected from Intel and AMD
datasheets.

vices from remote exploit attacks. INDRA uses
a core set at a higher privilege that is protected
from remote attacks, a resurrector, and monitors
the execution of the other cores, the resurrectees.
To further shield the resurrector from attacks,
measures such as using different operating sys-
tems or changes in the BIOS. System recovery
is enacted after the resurrector discovers an at-
tack; then the resurrector stops the resurrectee,
recovers its old state, and stops the damage done
by the attack. They note three metrics that judge
the performance of the system: remote exploit at-
tack immunity, detectability, and the overhead in-
duced. Multi-core processors are used due to the
high amount of intra-core communication needed
for transferring state information.

6 Summary and Conclusions

Multi-core processors are already expanding
their niche and are finding many new and creative
uses. Due to physical limitations and increased
multi-tasking requirements, the multi-core archi-
tecture is expected to become the standard over
the single-core predecessors. Parallel program-
ming and operating system collaboration remain
key in the proper fulfillment of a multi-core pro-
cessor’s usefulness. Further caching schemes,
both specialized and general, will continue to be
honed, narrowing the performance gap between
the processor and main memory. This new area
in computing is exciting and possibly the most
challenging yet.

References
[1] Advanced Micro Devices, Inc., “Multi-core

Processors - The Next Evolution in Comput-
ing,” White paper, 2005.

[2] D. Geer, “Industry Trends: Chip Makers
Turn to Multicore Processors,” Computer.org,
IEEE, pp. 11-13, May 2005.

[3] V. P. Heuring and H. F. Jordan, Computer
Systems Design and Architecture, Prentice
Hall, 2nd Edition, 2003.

[4] J. L. Hennessy, D. A. Patterson, Computer
Architecture: A Quantitative Approach, Mor-
gan Kaufmann Publishers, 4th Edition, 2007.

[5] L. Null, J. Lobur, Computer Organization and
Architecture, Jones and Bartlett Publishers,
2003.

[6] M. Gschwind, “The Cell Broadband Engine:
Exploiting Multiple Levels of Parallelism in
a Chip Multiprocessor,” IBM Research Divi-
sion, 2006.

[7] IBM Research,
http://www.research.ibm.com/cell/.

[8] NVIDIA Corporation,
http://www.nvidia.com/object/
tesla gpu processor.html, 2007.

[9] C. R. Clark, R. Nathuji, H. S. Lee, “Using an
FPGA as a Prototyping Platform for Multi-
core Processor Applications”, Georgia Insti-
tute of Technology, Atlanta, GA.



[10] D. Lewin, D. Lorenz, S. Ur, “A Method-
ology for Processor Implementation Verifica-
tion”, Technion, Haifa, Israel.

[11] J. L. Henning, SPEC CPU Subcommittee,
“SPEC CPU2006 Benchmark Descriptions”,
Standard Performance Evaluation Corpora-
tion, 2006.

[12] Advanced Micro Devices, Inc., “AMD
Athlon 64 FX Processor Key Architec-
tural Features”, http://www.amd.com/us-
en/Processors/ProductInformation/.

[13] O. Wechsler, “Inside Intel Core Microar-
chitecture”, Intel Corporation, White paper,
2006.

[14] H. Dybdahl, P. Stenstrom, “An Adaptive
Shared/Private NUCA Cache Partitioning
Scheme for Chip Multiprocessors”, HiPEAC
Network of Excellence.

[15] D. Upton, K. Hazelwood, “Heterogeneous
Chip Multiprocessor Design for Virtual Ma-
chines”, University of Virginia.

[16] W. Shi, H. S. Lee, L. Falk, M. Ghosh, “An
Integrated Framework for Dependable and
Revivable Architectures Using Multicore Pro-
cessors”, Georgia Institute of Technology, At-
lanta, GA, 2006.

[17] Intel Corporation, “Intel 64 and IA-32 Ar-
chitectures Optimization Reference Manual”,
2007.

[18] Intel Corporation, “Intel Core 2 Extreme
Processor X6800 and Intel Core 2 Duo Desk-
top Processor E6000 and E4000 Sequences”,
2007.

[19] Advanced Micro Devices, Inc., “AMD
Athlon 64 X2 Dual-Core Processor Product
Data Sheet”, 2007.


