
System Availability Benchmarking - A Survey
Jeremy Langston

School of Electrical and Computer Engineering
Tennessee Technological University

Cookeville, Tennessee 38505
Email: jwlangston21@tntech.edu

Abstract—This survey report highlights the main topics as-
sociated with availability benchmarking of computing and data
storage systems. Compared to performance benchmarking, avail-
ability is still in its infancy. A widely adopted benchmarking
framework has yet to be designed. This is partly due to the
complexity of such a task and the problems associated with it.
Numerous factors have to be taken into account, and there is a
debate as to how to include these factors in the benchmark. This
paper will give the reader a basic understanding of the concepts
associated with availability, some of the current availability
representations, and briefly discuss some current research being
done in this area.

I. INTRODUCTION

The availability of a system can be defined as the system’s
continued ability to provide application level services to its
users [1]. That is, availability is focused at the usability level
- can the system provide its services at all times to the users. A
further analysis into this concept states that high-availability is
having access to data and applications whenever needed with
an acceptable level of performance [2].

Reliability and serviceability often go hand-in-hand with
availability, and sometimes the differences are not apparent.
[1] gives a good explanation of reliability versus availability.
Reliability provides a metric of how often a component fails,
while availability includes the effects of downtime any failures
produce. Serviceability is synonymous with recoverability -
the characteristic of a system’s reaction to faults, errors, and
maintenance.

An availability benchmark is a test, or series of tests, that is
run on a system or a simulated system in order to be compared
against other systems, typically on the basis of uptime, or
downtime [4]. The benchmark can also test a system’s re-
sponsiveness of, and recovery to, a variety of different faults.
Currently the majority of availability benchmarking is done by
either a vendor or manufacturer. These benchmarks are often
proprietary and subjective, not standardized and objective,
which cause them to lose credibility during comparisons. Users
and developers need a way to compare a set of systems
using the same testing conditions. Even more importantly,
these benchmarks must exude uniformity and repeatability
for them to be accepted [5], as well as comprehensiveness,
representativeness, fairness, relevance, and independence [6].

Historically, the world of benchmarking has been domi-
nated by performance testing. Not until recently has system
availability really gained recognition and respect. As noted in
[3], system downtime can exceed $500,000 per hour, stressing

the importance of a highly available infrastructure. Each type
of system has different availability requirements, contingent
on their usages. For example, on-board avionic computer
systems have entirely different standards than an engineering
simulation system, or even a network storage system. The
requirements are drawn up from users, customers, and some-
times developers. To fulfill the requirements, a benchmark
could define a system based on its availability, from which a
system could be selected. In another application, a benchmark
could determine what effect a change in the system would
manifest.

There are many ways to classify a system, which can change
the benchmark dramatically. Systems can be categorized by
how they are arranged, what their functions are, how they
perform their functions, and so on. The high performance
commercial benchmarking community is familiar with the idea
of transactional systems and backup systems. Transactional
systems seen in banks hold highly the amount of traffic they
can sustain while keeping the system secure and available.
Backup systems will focus on redundancy; keeping data stored
and up to date is of the highest importance. It is easy to see
how the implementation domains are different and as such
should be taken into account. Storage systems can also be
vastly different in their implementations. Take for example a
traditional RAID (redundant array of independent disks) setup
on a commodity system. The characteristics of that system
would be quite distinguishable from that of a dedicated NAS
(network addressed storage) system. Further classifications can
be made by the level of availability required. For example,
an orbiting satellite’s computer system will have different
requirements than that of an email system. An email server
may allow for better performance at the sacrifice of availability
due to a low reaction time of operators. However, sending an
operator to fix the system on a satellite is very costly, therefore
uptime is of utmost importance.

The remainder of the paper is organized as follows: Sec-
tion 2 lists a few of the metrics commonly associated with
availability. Section 3 details some of the factors pertinent to
the topic such as typical hardware failures. Section 4 briefly
discusses different modeling techniques for testing. Section 5
explains issues related to workloads in fault-injection testing.
Section 6 covers a few of the known problems that present
roadblocks and misrepresentation. Lastly, section 7 presents
what other research is being done and section 8 concludes the
paper.

II. METRICS

Availability metrics can be a source of confusion, misrepre-
sentation, and disagreement. Some have taken a metric such as
MTBF and misconstrued it to mean something quite different.
It is important to have a standardized metric or metrics that
are well understood and accepted. Below are a few of the most
widely used representations.

A. Mean Time Between Failures - MTBF

A reliability measure, this calculation is the average time pe-
riod between two consecutive component failures that require
repair [1]. The higher the MTBF, the higher the availability.
Since the MTBF is an average of times, it cannot be used
to give a time of failure for a component. Consider a hard
drive with a MTBF of 50,000 hours. This means, on average,
the hard drive will work for 50,000 hours before a failure.
This does not imply that the time period is static. The hard
drive could fail 5 hours after being put online, but the next
failure may occur 99,995 hours later, giving an MTBF of
50,000 hours. The MTBF can be viewed on the hardware,
software, and system levels. [1] points out a misconception
that introducing redundancy will lower the MTBF. This may
be true for system MTBF overall, but the opposite is true for
hardware or software MTBF as there are more components in
which a failure may occur.

B. Mean Time Between Interruptions - MTBI

MTBI is very similar to MTBF. One difference is between
an interruption and a failure. An interruption is temporary and
does not require repair. Another difference is that MTBI is di-
rectly related to the end user, making it a closer representation
to availability than reliability.

C. Mean Time To Repair - MTTR

This metric depicts the duration of the repair and recovery
time. This means that if the time between the initial failure and
subsequent repair putting the system back to working order is
10 minutes, then the MTTR is 10 minutes. Repair can come
in the form of an automatic recovery (e.g. RAID rebuilding)
or manually by an operator.

D. Uptime

The most cited metric is uptime, often expressed as a
percentage ratio. This is a high level view of the system, as
it pertains to availability to the end user or application level.
Uptime ratio is calculated as follows:

UptimeRatio =
MTBF

MTBF + MTTR
∗ 100% (1)

The availability of a system is often referred to by the number
of nines in the uptime calculation result. Currently, systems
are seeing as high as Five 9’s, or 99.999% uptime, or even
higher. By calculating the downtime ratio and multiplying by
some time period, one can calculate the amount of time the
system is offline for that time period. Downtime ratio is merely
(1 − UptimeRatio). For example, a system with Five 9’s
availability has a downtime of 5.256 minutes per year.

Hardware Component failure, power/cooling/environment, arrangement.

Software Data corruption, driver timeout, incorrect specifications.

Process Human element, maintenance, security attacks, upgrades.

TABLE I
EXAMPLE FACTORS AFFECTING SYSTEM AVAILABILITY.

III. AVAILABILITY FACTORS

There are numerous factors that either directly or indirectly
affect system availability. Familiarity with these factors and
their faults will lead to a more robust benchmark framework.
A common categorization is labeling the factors as being
hardware, software, or process related [7]. Table 1 gives a
sample listing of these factors. There are other classifications
that can be performed, such as frequency, severity, redundancy,
or fault location.

Typically, hardware faults are the least frequent, followed
by software faults, and then process engagements. This is not
necessarily the same for every system. The more hardware
components that are active in a given system, the higher the
frequency of failure. To see this, consider a RAID array. Let f
be the frequency of a single disk fault and n be the number of
disks in the array. For a system running on a single disk, the
frequency of disk faults would be 1(f). For a system running,
say, 3 disks, the frequency of hard disk faults clearly triples to
3(f). This is a very simplistic example, but illustrates the point.
Process faults represent a reportedly high amount of overall
faults mainly due to one issue: human interaction [6].

The human element is the most difficult factor to include in
a benchmark. Here, realism is vital. Not only do the faults
requiring human intervention need to be realistic, the way
in which humans interact need to be realistic. In a leading
paper discussing the human factor, [8] states the difficulties
involving modeling human operators. Two key problems were
determined: human variability and repeatability. All operators
have differing skill sets and knowledge. In order to properly
test the frequency of human error, the operators must all be
of equivalent abilities. Clearly an expert in the field will make
fewer mistakes than a technician. The authors chose to use
experts to perform the benchmarking to exclude any unnec-
essary faults. However as long as the same level of operators
do the testing on all systems to be benchmarked, there will
be no real problem. The authors stated the problem with
repeatability was that once testers were exposed to a fault, they
learned how to solve it. The next time the test was run, they
would already know what to do. They referred to this as the
learning curve. Tasks and problems the operators would face
are initial configuration, reconfiguration, monitoring, diagnosis
and repair, an preventative maintenance.

IV. MODELING

A theoretical approach to availability benchmarking is
through system modeling. This can take the form of mathemat-
ical formulae, state diagrams, and simulations. State diagrams
graphically show the different states of a computer system and

the states that they can transition to. This analysis is easy to
comprehend, but suffers from exponential expansion due to the
number of components that should be included. The Markov
Chain has similarities to state diagrams, but expands them
giving weights, or probabilities, to each transition. However,
they are far more complex and, thus, prone to mistakes.

Simulation programs for modeling systems have been writ-
ten by universities and companies. One such company, Iso-
graph, has an array of programs that will analyze system faults,
reliability, costs, and various other areas, giving comprehen-
sive, detailed reports [9].

V. FAULTLOADS

One of the most common ways to benchmark a system
is with a workload. Performance benchmarks have CPU,
memory, I/O, and other intensive programs for testing different
areas of a system. These intensive programs use workloads
specialized for testing responses to integer and floating point
arithmetic, network throughput, etc. Availability benchmarks
may work in the same way. Here the workload contains faults
that will characterize real-world faults. A faultload can contain
a corrupted system call or an invalid repair procedure or even
disrupting the power feeding the system. The faultload can
be used on simulated systems, physical hardware, or software
[10]. As stated previously, there are fewer hardware faults and
failures than that of software. It turns out there are far fewer
which leads to reducing the frequency of hardware faults in
the faultload.

There are two common ways of obtaining faultloads: system
traces and hypothetical failures. System traces are logs that
show the daily functions and anomalies of a system. They can
be retrieved from IT centers with systems already in place.
However, for a system currently in development or soon after,
these logs have not been written yet. Also, these logs do not
necessarily depict the way a different system may behave. This
poses a problem: how can a faultload be designed without
previously seeing how the system will behave? Typically a
company will make a particular model of a system and make
advances to it without starting from scratch. When this is the
case, system logs can be used for faultloads and be still quite
accurate. Hypothetical faultloads can stray from the system’s
real-world failure characteristics. The faults used will often be
generic, but can go in great detail if the faultload designer
knows the inner workings of the system. One gray area to
faultload representativeness is the level of independency from
the system. For a benchmark to be used universally, the
faultload cannot be too overly detailed.

VI. PROBLEMS

In order for the faultload to be effective, it must repre-
sent real-world scenarios. [12] addresses the debate on fault-
injection representativeness. The topic is whether a system
should be measured based on responses to arbitrary faults. To
understand what an arbitrary fault may be, consider how a
typical memory system is built. A memory module often used
in server applications uses parity bits to determine corruption.

Upon retrieval of the memory location that is corrupted, the
system is notified and the necessary changes are made (often
reloading from disk). This is built in the hardware level,
and the software need not know how to check for memory
corruption. If the faultload designer is not careful, he or she
may inject the fault at a level where a check would have
already been made, such as after checking the parity bits
but before retrieving and using the memory. Software could
have caught the corrupted memory, but often designers forgo
the extra check for speed and efficiency. In most practical
instances, the software can assume the hardware is faultless.
The same goes for a non-atomic instruction block (meaning it
can be interrupted). A check is done on some data and then
the data is used. Injecting a fault at the instant the check is
completed and good, but before the data is processed, can be
considered arbitrary.

Fault-injection benchmarks are used to test a systems reac-
tion to faults. As [4] points out, fault-injection techniques leave
out two vital parts of an overall benchmark. These benchmarks
typically inject far more faults than would occur naturally. The
rate at which faults occur is a difficult number to assess, but
may be sampled from traces. Secondly, these benchmarks do
not typically test recovery. This issue has been addressed in
[11].

Another problem is comparing two architecturally different
systems [7]. This is especially problematic benchmarking
across different system designing companies. This issue is
referred to as the benchmark’s portability. For fault injection,
[19] addresses this problem stating that the system-specific and
non-specific methods should be separated. The non-system-
specific method could be done using software implemented
fault injection at a high level. Tsai et. al. approach the problem
by implementing a two stage fault injection process: a high-
level portion and a low-level portion. The high-level part
is intended to be highly portable across UNIX systems by
selecting fault parameters to be used by the low-level part.
The low-level part is implemented as a device driver in order
to beat fault-tolerant systems.

VII. RELATED WORK

Below are some of the previous tests and benchmarks, as
well as ones currently in research.

A. Physical Tests

Mendosus is an emulation test-bed for fault-injection on
SANs applications that was produced at Rutgers University
[14]. A SAN is emulated to the PCs connected to it. The
application on each PC is tested through faults injected by the
emulated SAN.

Messaline [15] is a fault-injection system that uses physical
contact perturbations to induce failures. Such injections are
done at the pin level with active probes and socket inser-
tion [13]. Active probes are devices that make contact with
the physical hardware and alter the electrical characteristics.
Socket insertion is putting a piece of hardware that lies
between the PCB and a chip. This socket can then cause

failures by manually changing the data on the chip (e.g.
changing a 1 to a 0).

MARS, Maintainable Real-time System, is a fault-tolerant
architecture built to stand up against rigorous testing. Three
physical tests are performed by [16]: heavy-ion radiation, pin-
level faults, and electromagnetic interference (EMI).

B. Software Tests

FERRARI, Fault and Error Automatic Real-time Injection,
works on the software level by using software traps [17].

Ftape, Fault Tolerance and Performance Evaluator, is a tool
with a controllable workload generator that allows faults to be
injected at high levels of usage on fault-tolerant systems [18].

Crashme is a test with one main objective: to crash the
operating system. The program passes illegal instructions,
data, and operations to the operating system to see if they
are caught [19].

Define, Doctor, and Fiat are three other tools that can be
used in software fault injection testing [19].

C. Hybrid Tests

R-Cubed [4], R3, is a benchmark framework designed at
Sun Microsystems, Inc. They propose a hierarchical approach
that addresses three key topics: rate (frequency of faults and
maintenance), robustness (ability to detect and handle events),
and recovery (speed system returns to operational state). Each
of these three topics has its own metric, and that metric
can be decomposed into either fault or maintenance event
classifications.

As discussed in the Problems section, [18] implements
a benchmarking framework for three Tandem TMR-based
fault-tolerant prototype systems. The authors stress-tested the
systems, introducing faults along the way using the FTAPE
injection tool. Three different workloads (CPU, memory, and
I/O intensive) were run at varying frequencies. They collected
data such as fault-to-error ratios, performance degradation, and
catastrophic incidents.

VIII. CONCLUSION

High availability is a requisite for today’s high-end systems
where downtime can result in catastrophic losses. This report
has stressed the need for an accepted computing and data
storage system availability benchmark frameworks. Bench-
marking results will allow for an indiscriminant comparative
analysis between systems. To this end, companies will be
better suited for choosing the correct system to fit their needs
and developers and researchers will have a metric to determine
the best course of action for system design.

REFERENCES

[1] E. Vargas, “High Availability Fundamentals”, Sun BluePrints Online,
Enterprise Engineering, Sun Microsystems, Inc., 2000.

[2] D. Brock, “A Recommendation for High-Availability Options in TPC
Benchmarks”, Data General.

[3] Sombers Associates, Inc., and W. H. Highleyman, “Let’s Get an Avail-
ability Benchmark”, The Availability Digest, 2007.

[4] J. Zhu, J. Mauro, and I. Pramanick, “R-Cubed (R3): Rate, Robustness, and
Recovery - An Availability Benchmark Framework”, Sun Microsystems,
Inc., 2002.

[5] K. Kanoun, H. Madeira, and J. Arlat, “A Framework for Dependability
Benchmarking”, DSN Workshop on Dependability Benchmarking, LAAS-
CNRS, Toulouse, France and DEI-FCTUC, University of Coimbra, Coim-
bra, Portugal, 2002.

[6] D. Oppenheimer, A. Brown, J. Traupman, P. Broadwell, and D. Patterson,
“Practical Issues in Dependability Benchmarking”, University of Califor-
nia at Berkeley.

[7] D. Wilson, B. Murphy, L. Spainhower, “Progress on Defining Standard-
ized Classes for Comparing the Dependability of Computer Systems”,
DSN Workshop on Dependability Benchmarking, 2002.

[8] A. Brown, C. Chung, D. Patterson, “Including the Human Factor in
Dependability Benchmarks”, University of California at Berkeley, 2002.

[9] Isograph, Inc., http://www.isograph-software.com.
[10] J. Arlat, Y. Crouzet, “Faultload Representativeness for Dependability

Benchmarking”, DSN Workshop on Dependability Benchmarking, LAAS-
CNRS, Toulouse, France, 2002.

[11] J. Zhu, J. Mauro, I. Pramanick, “System Recovery Benchmarking”,
DSN Workshop on Dependability Benchmarking, Sun Microsystems, Inc.,
2002.

[12] P. Koopman, “What’s Wrong with Fault Injection as a Benchmarking
Tool?”, DSN Workshop on Dependability Benchmarking, ECE Depart-
ment & ICES, Carnegie Mellon University, 2002.

[13] M. Hsueh, T. Tsai, R. Iyer, “Fault Injection Techniques and Tools”, IEEE
Computer, Volume 30, Number 4, Pages 75-82, 1997.

[14] X. Li, R. Martin, K. Nagaraja, T. Nguyen, B. Zhang, “Mendosus:
A SAN-Based Fault-Injection Test-Bed for the Construction of Highly
Available Network Services”, In 1st Workshop on Novel Uses of System
Area Networks (SAN-1), Rutgers University, 2002.

[15] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, E. Martins, D. Powell,
“Fault Injection for Dependability Validation: A Methodology and Some
Applications”, In IEEE Transactions on Software Engineering, Volume
16, Issue 2, Pages 166-182, 1990.

[16] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, G. Leber, “Evaluation
of the MARS Architecture by means of Three Physical Fault Injection
Techniques”, LAAS-CNRS, Chalmers University of Technology, Techni-
cal University of Vienna, 1995.

[17] G. Kanawati, N. Kanawati, J. Abraham, “FERRARI: A Flexible
Software-Based Fault and Error Injection System”, In IEEE Transactions
on Computers, Volume 44, Issue 2, 1995.

[18] Tsai, T., R. Iyer, “Measuring Fault Tolerance with the FTAPE Fault
Injection Tool”, In Proceedings Eighth International Conference on
Modeling Techniques and Tools for Computer Performance Evaluation,
Heidelberg, Germany, 1995.

[19] T. Tsai, R. Iyer, D. Jewett, “An Approach towards Benchmarking of
Fault-Tolerant Commercial Systems”, University of Illinois, 1996.

