
ECE 3120
Computer Systems

Assembly Programming

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Prev:
Basic computer concepts
68HCS12 addressing modes,instructions

Today:
Programming Structure
Assembler Directives

3 Sections of a HCS12 Assembly Program
Assembler directives

Defines data and symbol
Reserves and initializes memory locations
Specifies output format
Specifies the end of a program

Assembly language instructions
HCS12/MC9S12 instructions

Comments
Explains the function of a single or a group of instructions

Fields of a HCS12 Instruction

Label field
Optional
Starts with a letter and
followed by letters, digits, or
special symbols (_ or .)
Can start from any column if
ended with “:”
Must start from column 1 if
not ended with “:”

Operation field
Contains the mnemonic of a
machine instruction or an
assembler directive
Separated from the label by
at least one space

Operand field
Follows the operation field
and is separated from the
operation field by at least
one space
Contains operands for
instructions or arguments
for assembler directives

Comment field
Any line starts with an * or
; is a comment
Separated from the
operand and operation
field for at least one space
Optional

opcodelabel: ;commentsoperands
Instruction

loop ADDA #$40 ; add 40 to accumulator A

movb 0,X,0,Y ; memory to memory copy

(1) “loop” is a label
(2) “ADDA” is an instruction mnemonic
(3) “#$40” is the operand
(4) “add #$40 to accumulator A” is a comment

(1) no label field
(2) “movb” is an instruction mnemonic
(3) “0,X,0,Y” is the operand field
(4) “; memory to memory copy” is a
comment

Identify the Four Fields of an Instruction

Assembler Directives
END

Ends a program to be processed by an assembler
Any statement following the END directive is ignored.

ORG
The assembler uses a location counter to keep track of the memory
location where the next machine code byte should be placed.
This directive sets a new value for the location counter of the
assembler.
The sequence

ORG $1000
LDAB #$FF
places the opcode byte for the instruction LDAB #$FF at
location $1000.

dc.b (define constant byte)
db (define byte)
fcb (form constant byte)
- These three directives define the value of a byte or bytes that will be placed
at a given location.
- These directives are often preceded by the org directive.
- For example,

org $800
array dc.b $11,$22,$33,$44

dc.w (define constant word)
dw (define word)
fdb (form double bytes)
- Define the value of a word or words that will be placed at a given location.
- The value can be specified by an expression.
- For example,
vec_tab dc.w $1234, abc-20

fcc (form constant character)
Used to define a string of characters (a message)
The first character (and the last character) is used as
the delimiter.
The last character must be the same as the first
character.
The delimiter must not appear in the string.
The space character cannot be used as the delimiter.
Each character is represented by its ASCII code.
Example

msg fcc “Please enter 1, 2 or 3:”

fill (fill memory)
- This directive allows the user to fill a certain number of memory locations with a

given value.
- The syntax is fill value,count
- Example

space_line fill $20,40

ds (define storage)

rmb (reserve memory byte)

ds.b (define storage bytes)
- Each of these directives reserves a number of bytes given as the arguments to the

directive.
- Example

buffer ds 100
reserves 100 bytes

ds.w (define storage word)

rmw (reserve memory word)
- Each of these directives increments the location counter by the value indicated in

the number-of-words argument multiplied by two.
- Example

dbuf ds.w 20
reserves 40 bytes starting from the current location counter

equ (equate)
- This directive assigns a value to a label.
- Using this directive makes one’s program more readable.
- Examples

arr_cnt equ 100
oc_cnt equ 50

Storage

This directive increments and produces an internal counter used in conjunction
with the backward tick mark (`).
-No need to think up new labels:

loc loc
ldaa #2 same as ldaa #2

loop` deca loop001 deca
bne loop` bne loop001
loc loc

loop` brclr 0,x,$55,loop` loop002 brclr 0,x,$55,loop002

loc

A name assigned to a group of instructions
- Use macro and endm to define a macro

- Example of macro

sumOf3 macro arg1,arg2,arg3
ldaa arg1
adda arg2
adda arg3
endm

- Invoke a defined macro: write down the name and the arguments of the macro

sumOf3 $1000,$1001,$1002

is replaced by

ldaa $1000
adda $1001
adda $1002

Macro

Next…

Software Development Issues
Programming Arithmetic

	ECE 3120� Computer Systems�Assembly Programming
	3 Sections of a HCS12 Assembly Program
	Fields of a HCS12 Instruction
	Identify the Four Fields of an Instruction
	Assembler Directives
	fcc (form constant character)
	Next…

