ECE 3120 Computer Systems Arithmetic Programming

Manjeera Jeedigunta http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Algorithms \& Flowchart examples
Write programs to do arithmetic

- Multiprecision Addition
- Multiprecision Subtraction

Software Development Process

- Problem definition: Identify what should be done.
- Develop the algorithm. Algorithm is the overall plan for solving the problem at hand.
- An algorithm is often expressed in the following format:

Step 1

Step 2

- Another way to express overall plan is to use flowchart.
- Programming. Convert the algorithm or flowchart into programs.
- Program Testing
- Program maintenance

Symbols of Flowchart

Programs to do simple arithmetic

Example 2.3’ Write a program to add the values of memory locations at $\$ 2000$, $\$ 2001$, and $\$ 2002$, and save the result at $\$ 2100$.

Solution:

Step 1

$$
\mathrm{A} \Leftarrow \mathrm{~m}[\$ 2000]
$$

Step 2

$$
\mathrm{A} \Leftarrow \mathrm{~A}+\mathrm{m}[\$ 2001]
$$

Step 3

$$
\mathrm{A} \Leftarrow \mathrm{~A}+\mathrm{m}[\$ 2002]
$$

Step 4

$$
\$ 2100 \Leftarrow \mathrm{~A}
$$

Example 2.4’

Write a program to subtract the contents of the memory location at $\$ 2000$ from the sum of the memory locations at $\$ 2001$ and $\$ 2002$, and store the difference at \$2005.

Solution:

Figure 2.2 Logic flow of program 2.4

Example 2.6 Write a program to add two 16-bit numbers that are stored at \$2000-\$2001 and \$2002-\$2003 and store the sum at \$2010-\$2011.

Solution:

Step 1

$$
\mathrm{D} \Leftarrow \mathrm{~m}[\$ 2000]: \mathrm{m}[\$ 2001]
$$

Step 2

$$
\mathrm{D} \Leftarrow \mathrm{D}+\mathrm{m}[\$ 2002]: \mathrm{m}[\$ 2003]
$$

Step 3

$$
\mathrm{m}[\$ 2010]: \mathrm{m}[\$ 2011] \Leftarrow \mathrm{D}
$$

Multiprecision arithmetic

- Arithmetic performed in a 16-bit microprocessor on numbers larger than 16 bits.
- Makes use of the carry flag (C flag) of the condition code register (CCR).

The Carry/borrow Flag

- \quad Bit 0 of the CCR register
- \quad Set to 1 when the addition operation produces a carry 1
- \quad Set to 1 when the subtraction operation produces a borrow 1
- \quad Enables the user to implement multi-precision arithmetic

Example : To add \$8675 \& \$ 9978

Instructions:-
Ldd \#\$8645
Addd \#\$9978
HCS12 execution of these instructions
\$ 8645

+ \$9978
\$11F 1 B D \longrightarrow Sum
Carry

Example Write down the sequence to add two 4-byte numbers \$1A598183 and \$76548290 and store the result in \$1000~\$1003.

- Multiprecision addition is performed one byte at a time

$1 \quad 1$
$\$ 1 \mathrm{~A} 598183$
$+\$ 76548290$
$\$ 90$ AE 0413

Step 1: Add the least significant 16 bits
ldd \#\$8183
addd \#\$8290
Result generates a carry and therefore sets the carry flag to 1
Store contents of D in \$1002~\$1003
Step 2: The carry from the lower bytes must be added to the second MSB

ldda	$\# \$ 59$	
adca	$\# \$ 54$	$\rightarrow \$ 59+\$ 54+$ carry \rightarrow result in A

Store contents of A in \$1001
Step 3: Add the MSBs by using the add with carry

ldda	$\# \$ 1 \mathrm{~A}$
adca	$\# \$ 76 \rightarrow \$ 1 \mathrm{~A}+\$ 76+$ carry \rightarrow result in A

Store contents of A in $\$ 1000$

Next...

- Multiprecision Subtraction Example
- BCD Addition

