
ECE 3120
Computer Systems

Arithmetic Programming

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Today:
Multiplication and Division Examples
BCD

Multiplication and Division
Table 2 .1 Summary o f 68HC12 multiply and divide instruc tions

M nemonic

EM UL
EM ULS
M UL

EDIV

EDIVS

FDIV

IDIV

IDIVS

Function

unsigned 16 by 16 multiply
signed 16 by 16 multiply
unsigned 8 by 8 multiply

unsigned 32 by 16 divide

signed 32 by 16 divide

16 by 16 frac tional divide

unsigned 16 by 16 integer
divide
signed 16 by 16 integer
divide

(D) × (Y) → Y:D
(D) × (Y) → Y:D
(A) × (B) → A:B
(Y:D) ÷ (X)
quo tient → Y
remainder → D
(Y:D) ÷ (X)
quo tient → Y
remainder → D
(D) ÷ (X) → X
remainder → D
(D) ÷ (X) → X
remainder → D
(D) ÷ (X) → X
remainder → D

Operation

Example 2.10’ Write an instruction sequence to multiply the 16-bit numbers
stored at $800-$801 and $802-$803 and store the product at $900-$903.

ldy $800 ;load 1st operand into Y

ldd $802 ;load 2nd operand into D

emul ; Multiplying the numbers assuming unsigned numbers

sty $900 ;storing the upper 16 bits

std $902 ;storing the lower 16 bits

1st operand MSB

1st operand LSB

2st operand MSB

2st operand LSB

$800
$801

$802

$803

Original Operands in Memory

emul

$900
$901

$902

$903

Product in Memory

Y

D D
:
Y

MSBs

LSBs

Example 2.11 Write an instruction sequence to divide the signed 16-bit number
stored at $1005-$1006 by the signed 16-bit number stored at $1020-$1021 and
store the quotient and remainder at $1030-$1031 and $1032-$1033, respectively.

MSB of Rem

LSB of Rem

$1032
$1033

MSB of Divisor

LSB of Divisor

$1020
$1021

idivs

MSB of Quotient

LSB of Quotient

$1030
$1031

MSB of Dividend

LSB of Dividend

$1005
$1006D

X X

D

ldd $1005 ;load the dividend into D

ldx $1020 ;load the divisor into X

idivs ; perform signed division

stx $1030 ;storing the quotient

std $902 ;storing the remainder

Illustration of 32-bit by 32-bit Multiplication

16-bit

P ~ P+1 P+2 ~ P+3 P+4 ~ P+5 P+6 ~ P+7

upper half

upper half

upper half

upper half lower half

lower half

lower half

lower half

Address

partial product MLNL

partial product MHNL

partial product MLNH

partial product MHNH

Final product M × N

msb lsb

Note: msb stands for most significant byte and lsb for least significant byte

Figure 2.3 Unsigned 32-bit by 32-bit multiplication

16-bit 16-bit 16-bit

- Two 32-bit numbers M and N are divided into two 16-bit halves
M = MHML

N = NHNL

Example 2.12 Write a program to multiply two unsigned 32-bit numbers
stored at M~M+3 and N~N+3, respectively and store the product at P~P+7.

Solution:

org $1000
M ds.b 4 ;Multiplicand 4 bytes
N ds.b 4 ;Multiplier 4 bytes
P ds.b 8 ;Product 8 bytes

org $1500
ldd M+2 ;place ML in D
ldy N+2 ;place NL in Y
emul ; compute MLNL
sty P+4
std P+6
ldd M
ldy N
emul ; compute MHNH
sty P
std P+2
ldd M
ldy N+2
emul ; compute MHNL

16-bit

P ~ P+1 P+2 ~ P+3 P+4 ~ P+5 P+6 ~ P+7

upper half

upper half

upper half

upper half lower half

lower half

lower half

lower half

Address

partial product MLNL

partial product MHNL

partial product MLNH

partial product MHNH

Final product M × N

msb lsb

Note: msb stands for most significant byte and lsb for least significant byte

Figure 2.3 Unsigned 32-bit by 32-bit multiplication

16-bit 16-bit 16-bit

Example 2.12 contd…
; add MHNL to memory locations P+2~P+5

addd P+4
std P+4
tfr Y,D
adcb P+3
stab P+3
adca P+2
staa P+2

; propagate carry to the most significant byte
ldaa P+1
adca #0 ; add carry to the location at P+1
staa P+1 ; “
ldaa P ; add carry to the location at P
adca #0 ; “
staa P ; “

; compute MLNH
ldd M+2
ldy N
emul

16-bit

P ~ P+1 P+2 ~ P+3 P+4 ~ P+5 P+6 ~ P+7

upper half

upper half

upper half

upper half lower half

lower half

lower half

lower half

Address

partial product MLNL

partial product MHNL

partial product MLNH

partial product MHNH

Final product M × N

msb lsb

Note: msb stands for most significant byte and lsb for least significant byte

Figure 2.3 Unsigned 32-bit by 32-bit multiplication

16-bit 16-bit 16-bit

Example 2.12 contd..
; add MLNH to memory locations P+2 ~ P+5

addd P+4
std P+4
tfr Y,D
adcb P+3
stab P+3
adca P+2
staa P+2

; propagate carry to the most significant byte
clra
adca P+1
staa P+1
ldaa P
adca #0
staa P
end

16-bit

P ~ P+1 P+2 ~ P+3 P+4 ~ P+5 P+6 ~ P+7

upper half

upper half

upper half

upper half lower half

lower half

lower half

lower half

Address

partial product MLNL

partial product MHNL

partial product MLNH

partial product MHNH

Final product M × N

msb lsb

Note: msb stands for most significant byte and lsb for least significant byte

Figure 2.3 Unsigned 32-bit by 32-bit multiplication

16-bit 16-bit 16-bit

BCD Numbers and Addition

- Each digit is encoded by 4 bits
- Two digits are packed into one byte
- The addition of two BCD numbers is performed by binary addition and

an adjust operation using the DAA instruction.
- The instruction DAA can be applied after the instructions ADDA,

ADCA, and ABA.
- Simplifies I/O conversion

For example, the instruction sequence

LDAA $800
ADDA $801
DAA
STAA $802

adds the BCD numbers stored at $800 and $801 and saves the sum at $802.

Example 2.13’ Write a program to convert the 16-bit number stored at $800-$801 to
BCD format and store the result at $900-$904. Convert each BCD digit into its ASCII
code and store it in one byte.
Solution:

- A binary number can be converted to BCD format by using repeated division by 10.
- The largest 16-bit binary number is 65535 which has five decimal digits.
- The first division by 10 obtains the least significant digit, the second division by 10

obtains the second least significant digit, and so on.

org $800
data dc.w 12345 ; data to be tested

org $900
result ds.b 5 ; reserve bytes to store the result

org $1000
ldd data
ldy #result
ldx #10
idiv
addb #$30 ; convert the digit into ASCII code
stab 4,Y ; save the least significant digit
xgdx
ldx #10

idiv
adcb #$30
stab 3,Y ; save the second to least significant digit
xgdx
ldx #10
idiv
addb #$30
stab 2,Y ; save the middle digit
xgdx
ldx #10
idiv
addb #$30
stab 1,Y ; save the second most significant digit
xgdx
addb #$30
stab 0,Y ; save the most significant digit
end

Next…

Program Loops
Read Chapter 2.6

	Next…

