
ECE 3120
Computer Systems

Programming Loops

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Prev:
Write programs to do arithmetic

Today:
Loops

Program Loops

Types of program loops: finite and infinite loops

Looping mechanisms:

1. do statement S forever

2. For i = n1 to n2 do statement S or For i = n2 downto n1 do statement S

3. While C do statement S

4. Repeat statement S until C

Program loops are implemented by using the conditional branch instructions and
the execution of these instructions depends on the contents of the CCR register.

Do Statement S forever
Infinite loop
Possible to add “If C then exit”

Figure 2.4 An infinite loop

S

For i=n1 to n2 Do S
i = loop counter
S = Statement

1) Initialize the loop counter

2) Compare the loop counter with the limit

3) Perform the operations in S if loop counter within the limit

4) Increment the loop counter ‘i’ and go to step 2

For i=n2 to n1 Do S
i = loop counter
S = Statement

1) Initialize the loop counter

2) Compare the loop counter with the limit

3) Perform the operations in S if loop counter within the limit

4) Decrement the loop counter ‘i’ and go to step 2

While C Do S
Logical expression C is evaluated

Only while C if true, S will be executed

C S
true

false

Figure 2.6 The While ... Do looping construct

1) Initialize the logical expression C

2) Evaluate the logical expression C

3) If C is true perform the functions specified by S,
go back to 2, if not exit

4) Exit

Repeat S until C

Figure 2.7 The Repeat ... Until looping construct

initialize C

S

C
true

false

1) Initialize loop counter

2) Execute statement S

3) Evaluate C, if true go to step 2, else exit

Condition Code Register

C: carry
V: overflow
Z: zero
N: Negative
H: half-carry

S X I

7 6 5 4 3 2 1 0

Figure 2.8 Condition code register

H N Z V C

- Unary (unconditional) branch: always execute

- Simple branches: branch is taken when a specific bit of CCR is in a specific
status

- Unsigned branches: branches are taken when a comparison or test of unsigned
numbers results in a specific combination of CCR bits

- Signed branches: branches are taken when a comparison or test of signed
quantities results in a specific combination of CCR bits

Three categories of Branches
- Short Branches: in the range of -128 ~ +127 bytes

- Long Branches: in the range of 64KB

- bit-conditional branches

Branch Instructions
Four types of branch instructions:

T a b l e 2 .2 S u m m a r y o f s h o r t b r a n c h i n s t r u c t i o n s

M n e m o n i c F u n c t i o n

U n a r y B r a n c h e s

B R A
B R N

B r a n c h a l w a y s
B r a n c h n e ve r

E q u a t i o n o r O p e r a t i o n

S i m p l e B r a n c h e s

M n e m o n i c F u n c t i o n

B C C
B C S
B E Q
B M I
B N E
B P L
B V C
B V S

B r a n c h i f c a r r y c l e a r
B r a n c h i f c a r r y s e t
B r a n c h i f e q u a l
B r a n c h i f m i n u s
B r a n c h i f n o t e q u a l
B r a n c h i f p l u s
B r a n c h i f o ve r f l o w c l e a r
B r a n c h i f o ve r f l o w s e t

1 = 1
1 = 0

U n s i g n e d B r a n c h e s

M n e m o n i c F u n c t i o n

B H I
B H S
B L O
B L S

B r a n c h i f h i g h e r
B r a n c h i f h i g h e r o r s a m e
B r a n c h i f l o w e r
B r a n c h i f l o w e r o r s a m e

C = 0
C = 1
Z = 1
N = 1
Z = 0
N = 0
V = 0
V = 1

E q u a t i o n o r O p e r a t i o n

E q u a t i o n o r O p e r a t i o n

C + Z = 0
C = 0
C = 1

C + Z = 1

M n e m o n i c F u n c t i o n E q u a t i o n o r O p e r a t i o n

S i g n e d B r a n c h e s

B G E
B G T
B L E
B L T

B r a n c h i f g r e a t e r t h a n o r e q u a l
B r a n c h i f g r e a t e r t h a n
B r a n c h i f l e s s t h a n o r e q u a l
B r a n c h i f l e s s t h a n

N ⊕ V = 0
Z + (N ⊕ V) = 0
Z + (N ⊕ V) = 1

N ⊕ V = 1

Table 2.3 Summary of long branch instructions

Mnemonic Function

Unary Branches

LBRA
LBRN

Long branch always
Long branch never

Equation or Operation

Simple Branches

Mnemonic Function

LBCC
LBCS
LBEQ
LBMI
LBNE
LBPL
LBVC
LBVS

Long branch if carry clear
Long branch if carry set
Long branch if equal
Long branch if minus
Long branch if not equal
Long branch if plus
Long branch if overflow is clear
Long branch if overflow set

1 = 1
1 = 0

Unsigned Branches

Mnemonic Function

LBHI
LBHS
LBLO
LBLS

Long branch if higher
Long branch if higher or same
Long branch if lower
Long branch if lower or same

C = 0
C = 1
Z = 1
N = 1
Z = 0
N = 0
V = 0
V = 1

Equation or Operation

Equation or Operation

C + Z = 0
C = 0
C = 1

C + Z = 1

Mnemonic Function Equation or Operation

Signed Branches

LBGE
LBGT
LBLE
LBLT

Long branch if greater than or equal
Long branch if greater than
Long branch if less than or equal
Long branch if less than

N ⊕ V = 0
Z + (N ⊕ V) = 0
Z + (N ⊕ V) = 1

N ⊕ V = 1

Compare and Test Instructions
- Condition flags need to be set up before conditional branch instruction should

be executed.

- The 68HCS12 provides a group of instructions for testing the condition flags.

Table 2.4 Summary of compare and test instructions

Mnemonic Function

Compare instructions

CBA
CMPA
CMPB
CPD
CPS
CPX
CPY

Compare A to B
Compare A to memory
Compare B to memory
Compare D to memory
Compare SP to memory
Compare X to memory
Compare Y to memory

 Operation

(A) - (B)
(A) - (M)
(B) - (M)

(D) - (M:M+1)
(SP) - (M:M+1)
(X) - (M:M+1)
(Y) - (M:M+1)

Test instructions

Mnemonic Function

TST
TSTA
TSTB

Test memory for zero or minus
Test A for zero or minus
Test B for zero or minus

Operation

(M) - $00
(A) - $00
(B) - $00

Decrementing & Incrementing Instructions
DEC, DECA,DECB,DES,DEX,DEY
INC,INCA,INCB,INS,INX,INY

ldaa i
adda #1
staa i

Example 2.14’ Write a program to add an array of N 8-bit numbers and store the sum at
memory locations $1800~$1801. Use the For i = n1 to n2 do looping construct.

Solution:

Start

i ← 0
sum ← 0

i = N?

no

sum ← sum + array[i]

i ← i + 1

Stop

Figure 2.9 Logic flow of example 2.14

yes

i = loop counter

N = no.of elements in the array

Loop Primitive Instructions
- 68HCS12 provides a group of instructions that either decrement or increment a

loop count to determine if the looping should be continued.

- The range of the branch is from $80 (-128) to $7F (+127).
Table 2.5 Summary of loop primitive instructions

Mnemonic Function

DBEQ cntr, rel

DBNE cntr, rel

IBEQ cntr, rel

IBNE cntr, rel

TBEQ cntr, rel

TBNE cntr, rel

Decrement counter and branch if = 0
(counter = A, B, D, X, Y, or SP)

Decrement counter and branch if ≠ 0
(counter = A, B, D, X, Y, or SP)

Increment counter and branch if = 0
(counter = A, B, D, X, Y, or SP)

Increment counter and branch if ≠ 0
(counter = A, B, D, X, Y, or SP)

Test counter and branch if = 0
(counter = A, B, D, X, Y, or SP)

Test counter and branch if ≠ 0
(counter = A, B, D, X, Y, or SP)

 Equation or Operation

counter ← (counter) - 1
If (counter) = 0, then branch
else continue to next instruction
counter ← (counter) - 1
If (counter) ≠ 0, then branch
else continue to next instruction
counter ← (counter) + 1
If (counter) = 0, then branch
else continue to next instruction
counter ← (counter) + 1
If (counter) ≠ 0, then branch
else continue to next instruction
If (counter) = 0, then branch
else continue to next instruction

If (counter) ≠ 0, then branch
else continue to next instruction

Note. 1. cntr is the loop counter and can be accumulator A, B, or D and register X, Y, or SP.
 2. rel is the relative branch offset and is usually a label

Example 2.15’ Write a program to find the maximum element from an array of
N 8-bit elements using the repeat S until C looping construct.

N equ 20
org $1800

max_val ds.b 1
org $1000
ldaa array ; set array[0] as the temporary max max
staa max_val ; “
ldx #array+N-1 ; start from the end of the array
ldab #N-1 ; set loop count to N - 1

loop ldaa max_val
cmpa 0,x
bge chk_end
ldaa 0,x
staa max_val

chk_end dex
dbne b,loop ; finish all the comparison yet?

forever bra forever
array db 1,3,5,6,19,41,53,28,13,42,76,14

db 20,54,64,74,29,33,41,45
end

Bit Condition Branch Instructions

[<label>] BRCLR (opr) (msk) (rel) [<comment>]
[<label>] BRSET (opr) (msk) (rel) [<comment>]

where

opr specifies the memory location to be checked and must be specified using either
the direct, extended or index addressing mode.

msk is an 8-bit mask that specifies the bits of the memory location to be checked.
The bits of the memory byte to be checked correspond to those bit positions
that are 1s in the mask.

rel is the branch offset and is specified in the relative mode.

For example, in the sequence

loop inc count
…
brset $66,$e0,loop
…

the branch will be taken if the most significant three bits at $66 are all ones.

Instructions for Variable Initialization

1. [<label>] CLR opr [<comment>]

where opr is specified using the extended or index addressing modes. The
specified memory location (1 bye) is cleared.

2. [<label>] CLRA [<comment>]

Accumulator A is cleared to 0

3. [<label>] CLRB [<comment>]

Accumulator B is cleared to 0

Next…

Shift & Rotation
Read Chapter 2.7

	Do Statement S forever
	For i=n1 to n2 Do S
	For i=n2 to n1 Do S
	While C Do S
	Repeat S until C
	Branch Instructions
	Decrementing & Incrementing Instructions
	Next…

