
ECE3120: Computer Systems
Hardware & Software Development Tools

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Using the D-Bug12 Commands
- BF <StartAddress> <EndAddress> [<Data>]
•Fill a block of memory locations with the value of <Data>.

•To fill the memory locations from $1000 to $1FFF with 0, enter the
following command:

>bf 1000 1FFF 0

- MD <StartAddress> [< EndAddress >]
• Display memory contents from < StartAddress > to < EndAddress
>.
• 16 bytes are displayed on each line.

•Only one line is displayed if the EndAddress is not specified.

>md 1000
1000 AA 85 06 0C - D7 98 9A 61 - DF BE BC E9 - 03 AE D0 3D a.......=
>md 1005 1020
1000 AA 85 06 0C - D7 98 9A 61 - DF BE BC E9 - 03 AE D0 3D a.......=
1010 75 DA DF 39 - 3F 34 BD A9 - 2A CA FA DB - AC DA 18 97 u..9?4..*.......
1020 4D 5B 48 BA - B2 F7 B6 1B - 92 99 E5 E4 - A5 E9 01 9F M[H.............
>

MDW <StartAddress> [<EndAddress>]

>mdw 1000

1000 AA85 060C - D798 9A61 - DFBE BCE9 - 03AE D03D a.......=
>mdw 1000 1020

1000 AA85 060C - D798 9A61 - DFBE BCE9 - 03AE D03D a.......=
1010 75DA DF39 - 3F34 BDA9 - 2ACA FADB - ACDA 1897 u..9?4..*.......
1020 4D5B 48BA - B2F7 B61B - 9299 E5E4 - A5E9 019F M[H.............
>

MM <Address> [<Data>]
• Used to examine and modify the contents of memory locations one byte at

a time.
• If the 8-bit data parameter is present on the command line, the byte at

memory location
• <Address> is replaced with <Data> and the command is terminated.

– If no data is provided, then D-Bug12 enters the interactive memory modify
mode.

– In the interactive mode, each byte is displayed on a separate line following the
address of data.

– Single-character sub-commands are used for the modification and verification of
memory contents in interactive mode.

– The available sub-commands are as follows:
[<Data>] <CR> Optionally update current location and display the next location.
[<Data>] </> or <=> Optionally update current location and redisplay the same location.
[<Data>] <^> or <-> Optionally update current location and display the previous location.
[<Data>] <.> Optionally update current location and exit Memory Modify.

>mm 1000
1000 00
1001 00 FF
1002 00 ^
1001 FF
1002 00
1003 00 55 /
1003 55 .
>

MMW <Address> [<Data>]
- Allows the contents of memory to be examined and/or modified as 16-bit hex data.
- If the 16-bit data is present on the command line, the word at memory location

<Address> is replaced with <Data> and the command is terminated.
- If no data is provided, then D-Bug12 enters the interactive memory modify mode.
- MMW supports the same set of sub-commands as does the MM command.

>mmw 1100
1100 00F0
1102 AA55 0008
1104 0000 ^
1102 0008 aabb
1104 0000
1106 0000 .
>
Move <StartAddress> <EndAddress> <DestAddress>
- The number of bytes moved is one more than <EndAddress> - <StartAddress>

>move 1000 10ff 1100
>

RD – register display
>rd
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1521 3C00 2014 0000 6E:14 1001 0100
xx:1521 9C42 CPD $0042
>

RM – register modification

>rm
PC=0000 1500
SP=0A00
IX=0000 0100
IY=0000
A=00
B=00 ff
CCR=90 d1
PC=1500 .
>

<RegisterName> <RegisterValue>
- Allow one to change the value of any CPU register.
- Each bit of the CCR register can be changed by specifying its name.

>pc 2000
PC SP X Y D = A:B CCR = SXHI NZVC
2000 0A00 0100 0000 00:FF 1101 0001
>x 800
PC SP X Y D = A:B CCR = SXHI NZVC
2000 0A00 0800 0000 00:FF 1101 0001
>c 0
PC SP X Y D = A:B CCR = SXHI NZVC
2000 0A00 0800 0000 00:FF 1101 0000
>z 1
PC SP X Y D = A:B CCR = SXHI NZVC
2000 0A00 0800 0000 00:FF 1101 0100
>d 2010
PC SP X Y D = A:B CCR = SXHI NZVC
2000 0A00 0800 0000 20:10 1101 0100
>

CCR bit name Description Legal Values

S
H
N
Z
V
C

IM
XM

STOP enable
Half carry
Negative flag
Zero flag
Two's complement over flg
Carry flag
IRQ interrupt mask
XIRQ interrupt mask

0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1

Table 3.4 Condition code register bits

• Invokes the one-line assembler/disassembler.
• Allows memory contents to be viewed and altered using assembly language
mnemonics.
• When displaying instructions, each instruction is displayed in its mnemonic
form.
• The assembly/disassembly process can be terminated by a period.
• The one-line assembler displays the current instruction and allows the user to
enter new instruction.
• User can skip the current instruction by pressing the Enter key.

ASM <Address> (1 of 2)

The following example displays instruction starting from $2000:
>asm 2000
2000 FC0800 LDD $0800 >
2003 CD0900 LDY #$0900 >
2006 CE000A LDX #$000A >
2009 1810 IDIV >
200B CB30 ADDB #$30 >
200D 6B44 STAB 4,Y >
200F B7C5 XGDX >
2011 CE000A LDX #$000A >.
>

The following example enters three instructions (in bold face)
starting from $1500:
>asm 1500
1500 FC0800 LDD $0800
1503 F30802 ADDD $0802
1506 7C0900 STD $0900
1509 E78C TST 12,SP >.
>

ASM <Address> (2 of 2)

>br 1020 1040 1050 ; set three breakpoints
Breakpoints: 1020 1040 1050
>br ; display current breakpoints
Breakpoints: 1020 1040 1050
>

BR [<Address> …] Setting or Examine Breakpoints
• A breakpoint halts the program execution when the CPU

reaches the breakpoint address.
• When a breakpoint is encountered, the D-Bug12 monitor

displays the contents of CPU registers and the instruction at the
breakpoint (not executed yet).

• Breakpoints are set by typing the breakpoint command followed
by one or more breakpoint addresses.

• Entering the breakpoint command without any breakpoint
addresses will display all the currently set breakpoints.

• A maximum of ten user breakpoints may be set at one time.

>br 2000 2010 2020 2040 2090 ; set four breakpoints
Breakpoints: 2000 2010 2020 2040 2090
>nobr 2000 2010 ; delete two breakpoints
Breakpoints: 2020 2040 2090
>nobr ; delete all breakpoints
All Breakpoints Removed
>

NOBR [<Address> <Address>]
• Delete one or more previously defined breakpoints.
• All breakpoints will be deleted if no addresses are

specified.

>g 1500
User Bkpt Encountered
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 150C 3C00 7B48 0000 03:E8 1001 0001
xx:150C 911E CMPA $001E
>

G [<Address>]

• Begin execution of user code at the specified
address.

• If no address is specified, CPU starts execution of the
instruction at the current PC address.

>pc 1500
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1500 3C00 1000 1002 00:00 1001 0101
xx:1500 CF1500 LDS #$1500
>gt 1540
Temporary Breakpoint Encountered
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1510 1500 1000 1002 1E:00 1001 0000
xx:1510 3B PSHD
>

GT <Address>

• Execute instruction until the given address and stop.
• User usually needs to specify where the program

execution should start before issuing this command.

>pc 1500
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1500 1500 1000 1002 1E:00 1001 0000
xx:1500 CF1500 LDS #$1500
>t
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1503 1500 1000 1002 1E:00 1001 0000
xx:1503 CE1000 LDX #$1000
>t 2
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1506 1500 1000 1002 1E:00 1001 0000
xx:1506 34 PSHX
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1507 14FE 1000 1002 1E:00 1001 0000
xx:1507 861E LDAA #$1E
>

T [<count>]
• Used to execute one or multiple instructions starting from the current

PC address.
• As each program instruction is executed, the CPU register contents

and the next instruction to be executed are displayed.
• Only one instruction will be executed when no count is specified.

>call 1600
Subroutine Call Returned
pp PC SP X Y D = A:B CCR = SXHI NZVC
38 1600 0A00 0032 0900 00:31 1001 0000
xx:1600 FC1000 LDD $1000
>

CALL [<Address>]
• Used to execute a subroutine and returns to the D-Bug12 monitor

program.
• All CPU registers contain the values at the time the final RTS

instruction was executed, with the exception of the program counter.
• The program counter contains the starting address of the subroutine

when returning from the subroutine.

Tips for Assembly Program Debugging

• Syntax errors
– Misspelling of instruction mnemonics

• Starting instruction mnemonic at column 1. The mnemonic is
treated as a label whereas the operands are treated as
mnemonic.

– Missing operands
• Will be highlighted by the assembler and are easy to fix.

• Logic errors
– Using extended (or direct) mode instead of immediate mode

• A program with this type of addressing mode error is on the
next page.

N equ 20 ; array count
org $1000

array dc.b 2,4,6,8,10,12,14,16,18,20
dc.b 22,24,26,28,30,32,34,36,38,40

sum ds.w 1

org $1500
ldx array ; place the starting address of array in X
movw 0,sum ; initialize sum to 0
ldy N ; initialize loop count to N

loop ldab 1,x+ ; place one number in B and move array pointer
sex B,D ; sign-extend the 8-bit number to 16-bit
addd sum ; add to sum
std sum ; update the sum
dbne y,loop ; add all numbers to sum yet?
swi ; return to monitor
end

- Assemble and download this program onto the demo board.

>load
....
done
>

• Use the asm command to make sure that the program is downloaded correctly.

>asm 1500
xx:1500 FE1000 LDX $1000 >
xx:1503 180400001014 MOVW $0000,$1014 >
xx:1509 DD14 LDY $0014 >
xx:150B E630 LDAB 1,X+ >
xx:150D B714 SEX B,D >
xx:150F F31014 ADDD $1014 >
xx:1512 7C1014 STD $1014 >
xx:1515 0436F3 DBNE Y,$150B >
xx:1518 3F SWI >.

•Make sure that program data is downloaded correctly. Use the md command:

>md 1000 1010
1000 02 04 06 08 - 0A 0C 0E 10 - 12 14 16 18 - 1A 1C 1E 20
1010 22 24 26 28 - 00 00 B9 A9 - 2A CA FA DB - AC DA 18 97 "$&(....*.......
>

>g 1500
User Bkpt Encountered
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1519 3C00 0213 0000 FF:07 1001 1000
xx:1519 88F4 EORA #$F4
>
Exam the execution result – incorrect!!
>md 1010
1010 22 24 26 28 - FF 07 B9 A9 - 2A CA FA DB - AC DA 18 97
>

• The program is short.
• Errors can be found by tracing.
• Set PC to the start of the program (at $1500)

>pc 1500
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1500 3C00 0213 0000 FF:07 1001 1000
xx:1500 FE1000 LDX $1000
>

Run the Program

>t 1
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1503 3C00 0204 0000 FF:07 1001 0000
xx:1503 180400001014 MOVW $0000,$1014
>

• The executed instruction is “ldx $1000” which should place the
start address of the array in X.
• The instruction trace result shows that X receives $0204, not
$1000.
• This is due to addressing mode error.
• Change the instruction to ldx #$1000 and rerun the program.
• Reload the program and trace the program.
• Trace two instructions this time.

Trace One Instruction at a Time

>t 2
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1503 3C00 1000 0000 FF:F0 1001 0000
xx:1503 180400001014 MOVW $0000,$1014
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1509 3C00 1000 0000 FF:F0 1001 0000
xx:1509 DD14 LDY $0014
>md 1010 ; examine sum at $1014~$1015.
1010 22 24 26 28 - FF 00 B9 A9 - 2A CA FA DB - AC DA 18 97
>

• We expect the variable sum (at $1014 and $1015) to
receive $0000. But it didn’t.
• The error is again caused by incorrect use of the
addressing mode.
• The movm 0,sum instruction copies the contents of
memory location 0 to sum.
• Change the second instruction to movw #0,sum. Rerun
the program and examine the memory contents.
• It is still incorrect !!

>load
*
>g 1500
User Bkpt Encountered
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1519 3C00 100F 0000 00:F0 1001 0000
xx:1519 88F4 EORA #$F4
>md 1010
1010 22 24 26 28 - 00 F0 B9 A9 - 2A CA FA DB - AC DA 18 97
>

• Trace the program up to the third instruction:

>pc 1500
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1500 3C00 100F 0000 00:F0 1001 0000
xx:1500 CE1000 LDX #$1000 ; 1st instruction
>t 3
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1503 3C00 1000 0000 00:F0 1001 0000
xx:1503 180300001014 MOVW #$0000,$1014 ; 2nd instruction
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1509 3C00 1000 0000 00:F0 1001 0000
xx:1509 DD14 LDY $0014 ; 3rd instruction
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 150B 3C00 1000 000F 00:F0 1001 0000
xx:150B E630 LDAB 1,X+
>
• The program intends to load 20 into Y with the third instruction and
expect Y to be set to 20. But Y did not get 20. It receives 0F instead.
• This is due to the incorrect use of the addressing mode.
• Change the instruction to ldy #20 and rerun the program.

>g 1500
User Bkpt Encountered
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 151A 3C00 1014 0000 01:A4 1001 0000
xx:151A F421BD ANDB $21BD
>md 1010
1010 22 24 26 28 - 01 A4 B9 A9 - 2A CA FA DB - AC DA 18 97
>

• After this correction, sum receives the correct value $1A4 (420).

• Example Program – Finding the sum of elements of an array

N equ 20 ; array count
org $1000

array dc.b 2,4,6,8,10,12,14,16,18,20
dc.b 22,24,26,28,30,32,34,36,38,40

sum ds.w 1

org $1500
ldx #array ; place the starting address of array in X
movw #0,sum ; initialize sum to 0
ldy #N ; initialize loop count to N

loop ldd 1,x+ ; place one number in D and move array pointer
addd sum ; add to sum
std sum ; update the sum
dbne y,loop ; add all numbers to sum yet?
swi ; return to monitor
end

Mismatch of Operand Size

•The value of sum is incorrect after running the program:

>md 1010
1010 22 24 26 28 - A6 1F B9 A9 - 2A CA FA DB - AC DA 18 97
>

This program can be debugged by tracing:
>pc 1500
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1500 3C00 1014 0000 A6:1F 1001 1000
xx:1500 CE1000 LDX #$1000
>t
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1503 3C00 1000 0000 A6:1F 1001 0000
xx:1503 180300001014 MOVW #$0000,$1014
>t
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 1509 3C00 1000 0000 A6:1F 1001 0000
xx:1509 CD0014 LDY #$0014
>t
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 150C 3C00 1000 0014 A6:1F 1001 0000
xx:150C EC30 LDD 1,X+

>t
PP PC SP X Y D = A:B CCR = SXHI NZVC
38 150E 3C00 1001 0014 02:04 1001 0000
xx:150E F31014 ADDD $1014
>
The 4th instruction should place the value 2 in D rather than $0204. This is due to
the incorrect use of the instruction of ldd 1,x+. This instruction should be replaced
by the following two instructions:

ldab 1,x+
clra

• Other logic errors:
•Inappropriate Use of Index Addressing Mode
•Indexed addressing mode is often used to step through array elements.
•After accessing each element, the index register must be incremented or
decremented.
•Program execution can’t be correct if index register is incremented or
decremented incorrectly.
•This error can be found after performing computation in the first one or two
elements by program tracing.

	ECE3120: Computer Systems�Hardware & Software Development Tools
	MM <Address> [<Data>]
	
	ASM <Address> (1 of 2)
	BR [<Address> …] Setting or Examine Breakpoints
	NOBR [<Address> <Address>]
	G [<Address>]
	GT <Address>
	T [<count>]
	CALL [<Address>]
	Tips for Assembly Program Debugging
	Run the Program
	Trace One Instruction at a Time
	Mismatch of Operand Size

