
ECE3120: Computer Systems
Chapter 4: Subroutines

Manjeera Jeedigunta

http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu

Tel: 931-372-6181, Prescott Hall 120

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Issues in Subroutine Calls

1. Parameter passing
- Use registers
- Use the stack
- Use global memory

2. Returning results
- Use registers
- Use the stack
- Use global memory

3. Local variable allocation
- Allocated by the callee
- The following instruction is the most efficient method of local variable
allocation.

leas -n,sp ; allocate n bytes in the stack for local variables

4. Local variable deallocation
- space allocated to local variables must be deallocated
- The following instruction is the most efficient method of local variable
deallocation.

leas n,sp ; deallocate n bytes from the stack

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Stack Frame

- The region in the stack that holds incoming parameters, the subroutine return
address, local variables, and saved registers is referred to as stack frame.

- The stack frame is also called activation record.

Local variables

Saved registers

Return address

Incoming parameters

SP

Figure 4.9 Structure of the 68HC12 stack frame

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Binary Search ..Recap

Step 1

Initialize variables max and min to n -1 and 0, respectively.

Step 2

If max < min, then stop. No element matches the key.

Step 3

Let mean = (max + min)/2

Step 4

If key = arr[mean], then key is found in the array, exit.

Step 5

If key < arr[mean], then set max to mean - 1 and go to step 2.

Step 6

If key > arr[mean], then set min to mean + 1 and go to step 2.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Example 4.3 Write a program to implement the binary search
algorithm and also a sequence of instructions to test it.

Solution:

n equ 30 ; array count
key equ 69 ; key to be searched

arr db 1,3,6,9,11,20,30,45,48,60
db 61,63,64,65,67,69,72,74,76,79
db 80,83,85,88,90,110,113,114,120,123
org $1000

max rmb 1 ; maximum index value for
comparison
min rmb 1 ; minimum index value for comparison
mean rmb 1 ; the average of max and min
result rmb 1 ; search result

org $1500
clra
staa min ; initialize min to 0
staa result ; initialize result to 0
ldaa #n-1
staa max ; initialize max to n-1
ldx #arr ; use X as the pointer to the array

Step 1

Max=N-1;Min=0

Step 2

Max<Minàstop

Step 3

Mean=max+min/2

Step 4

Key=arr[mean]àfound

Step 5

Key<arr[mean]

Max=mean-1;goto step2

Step 6

Key>arr[mean]

Min=mean+1;goto setp2

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

loop ldab min
cmpb max
lbhi notfound
addb max ; compute mean
lsrb ; “
stab mean ; save mean
ldaa b,x ; get a copy of the element

;arr[mean]
cmpa #key
beq found
bhi search_lo ;key<arr[mean]
ldaa mean ;key>arr[mean]
inca
staa min ; place mean+1 in min to continue
bra loop

search_lo ldaa mean
deca
staa max
bra loop

found ldaa #1
staa result

notfound swi
end

Step 1

Max=N-1;Min=0

Step 2

Max<Minàstop

Step 3

Mean=max+min/2

Step 4

Key=arr[mean]àfound

Step 5

Key<arr[mean]

Max=mean-1;goto step2

Step 6

Key>arr[mean]

Min=mean+1;goto setp2

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Example: Convert the binary search program into a subroutine so that it can be called by other program units. Let

the starting address of the array, array count and the key to be matched be passed via the stack and the result to be

returned in an accumulator D

arr_lo

arcnt_lo

key_lo

ret_addr

[X]

[B]

min

max

mean SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 8

SP + 9

SP + 10

Figure E4.2 Stack for Ex4.1

The main program is as follows:
mean equ 0 ; distance from the top of the stack
max equ 1 ;distance ;;
min equ 2 ;distance
key_lo equ 8 ;key local
arcnt_lo equ 9 ;N in local variables
arr_lo equ 10 ;array address in local
n equ 30 ; array count
key equ 2 ; key to be searched
arr db 1,3,6,9,11,20,30,45,48,60

db 61,63,64,65,67,69,72,74,76,79
db 80,83,85,88,90,110,113,114,120,123
org $1000

result rmb 1
org $1500
lds #$1500 ; initialize the stack pointer
ldx #arr ; pass array base address
pshx ; “
ldaa #n ; pass array count
psha ; “
ldaa #key ; pass the search key
psha ; “
jsr bin_search
staa result
swi

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

The following subroutine implements the binary search subroutine and returns the search result in A. A contains a
1 if the key is found in the array. Otherwise,
it contains a 0.

arr_lo

arcnt_lo

key_lo

ret_addr

[X]

[B]

min

max

mean SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 8

SP + 9

SP + 10

Figure E4.2 Stack for Ex4.1

bin_searchpshx
pshb
leas -3,sp ; allocate 3 bytes for local
clr min,sp ; initialize min to 0
ldaa arcnt_lo,sp ;#n
deca ;n-1
staa max ; initialize max to arcnt - 1
ldx arr_lo,sp ; use X as the pointer to the array

loop ldab min,sp
cmpb max,sp
lbgt notfound ; if min > max, then not found
addb max,sp ; compute mean
lsrb ; "
stab mean,sp ; save mean
ldaa b,x ; get a copy of the element arr[mean]
cmpa key_lo,sp
beq found
bgt search_lo
ldaa mean,sp
inca
staa min,sp ; place mean+1 in min to continue
bra loop

search_lo ldaa mean,sp
deca
staa max,sp
bra loop

found ldaa #1
bra done

notfound ldaa #0
done leas 3,sp

pulb
pulx
rts
end

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Finding the Square Root

- One of the methods for finding the square root of an integer is based on the
following equation:

Σ
i = 0

n - 1

i =
n(n - 1)

2
(4.1)

- Equation 4.1 can be transformed into

Σ
i = 0

n - 1

(2i + 1) (4.2)n2 =

- The algorithm for finding the square root of an integer (q) based on equation 4.2
is

illustrated in the flowchart shown in Figure 4.16.

n^2<q
n^2=q
n^2>q

nàsqrt(q)

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Start

i ← 0

sum ← 0

sum ← sum + (2i + 1)

sum < q?

i ← i + 1

yes

sq_root ← i

Stop

Figure 4.16 Algorithm for finding the square root of integer q.

no

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Example 4.14 Write a subroutine to implement the square root algorithm. This subroutine should
be able to find the square root of a 32-bit unsigned integer. The parameter is pushed onto the
stack and the square root is returned in accumulator D.

Solution:
The stack frame is shown in Figure 4.17. The subroutine and the instruction sequence for testing
the subroutine is shown in the following pages.

q_val

re turn address

[Y]

i_ lo cal

sum

SP

SP + 2

SP + 1 0

Figure 4 .1 7 Stack frame o f example 4 .14

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

q_hi equ $000F ; upper word of q
q_lo equ $4240 ; lower word of q
i_local equ 0 ; distance of local variable i from the top of the stack
sum equ 2 ; distance of local variable sum from the top of the stack
q_val equ 10 ; distance of incoming parameter q from the top of stack
local equ 6 ; number of bytes allocated to local variables

org $800
sq_root rmb 2 ; to hold the square root of q

org $1000
ldd #q_lo
pshd
ldd #q_hi
pshd
jsr find_sq_root
std sq_root
leas 4,sp
swi

q_val

re turn address

[Y]

i_ lo cal

sum

SP

SP + 2

SP + 1 0

Figure 4 .1 7 Stack frame o f example 4 .14

Example 4.14 :-Finding Square Root

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

find_sq_root pshy ; save y in the stack
leas -local,sp ; allocate local variables
ldd #0 ; initialize local variable i to 0
std i_local,sp ; "
std sum,sp ; initialize local variable sum to 0
std sum+2,sp ; "

loop ldd i_local,sp
ldy #2
emul ; compute 2i

; add 2i to sum
addd sum+2,sp
std sum+2,sp
tfr y,d
adcb sum+1,sp
stab sum+1,sp
adca sum,sp
staa sum,sp

q_val

re turn address

[Y]

i_ lo cal

sum

SP

SP + 2

SP + 1 0

Figure 4 .1 7 Stack frame o f example 4 .14

Subroutine: finding sq root

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

; add 1 to sum (need to propagate carry to the most significant byte of
sum)

ldaa #1
adda sum+3,sp
staa sum+3,sp
ldaa sum+2,sp
adca #0
staa sum+2,sp
ldaa sum+1,sp
adca #0

staa sum+1,sp
ldaa sum,sp
adca #0
staa sum,sp

; increment i by 1
ldd i_local,sp
addd #1
std i_local,sp

q_val

re turn address

[Y]

i_ lo cal

sum

SP

SP + 2

SP + 1 0

Figure 4 .1 7 Stack frame o f example 4 .14

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Contd..

; compare sum to q_val by performing subtraction (need consider borrow)
ldd sum+2,sp
subd q_val+2,sp
ldaa sum+1,sp
sbca q_val+1,sp
ldaa sum,sp
sbca q_val,sp
lblo loop
ldd i_local,sp ; place sq_root in D before return

; deallocate space used by local variables
exit leas local,sp

puly
rts
end

q_val

re turn address

[Y]

i_ lo cal

sum

SP

SP + 2

SP + 1 0

Figure 4 .1 7 Stack frame o f example 4 .14

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

