
ECE3120: Computer Systems
Chapter 4: D-Bug12 Functions

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Prev
Subroutines

Today
Using the D-Bug 12 Functions to perform I/O
Operations

Using the D-Bug12 Functions to Perform I/O Operations

- All functions listed in Table 4.2 are written in C language.

- The first parameter to the function must be passed in accumulator D. The
remaining parameters must be pushed onto the stack in the reverse order they
are listed in the function declaration.

- Parameters of type char will occupy the lower order byte of a word pushed
onto the stack.

- Parameters pushed onto the stack before the function is called remain on the
stack when the function returns. It is the responsibility of the caller to remove
passed parameters from the stack.

- All 8- and 16-bit values are returned in accumulator D. A returned value of
type char is returned in accumulator B.

int getchar (void)
Pointer address: $EE84
Function: retrieve a single character from the control terminal.
Incoming parameter: none
Returned value: 8-bit character in accumulator B

Adding the following instruction sequence will read a character from SCI0 port:
getchar equ $EE84

…
jsr [getchar,PCR]

int putchar(int)
Pointer address: $EE86
Function: outputs a single character to the control terminal
Incoming parameter: character to be output in accumulator B
Returned value: the character that was sent (in B)

- This function outputs a character to serial communication port SCI0.
- The character to be output should be placed in accumulator B.
- The following instruction sequence will output the character A to serial port

SCI0

putchar equ $EE86
…
ldab #$41; place the ASCII code of ‘A’ in accumulator B
jsr [putchar,PCR]
…

int printf(char *format,…)
Pointer address: $EE88
Function: convert, format, and print its arguments on the standard output.

Incoming parameters: zero or more integer data to be output on the stack,
D contains the address of the format string. The format
string must be terminated with a zero.

Returned value: number of characters printed in D.

- This function is used to convert, format, and print its argument as standard
output under the control of the format string pointed to by format.

- All except floating-point data types are supported.
- The format string contains two basic types of objects:

1. ASCII characters which will be copied directly to the display device.
2. Conversion specifications. Each conversion specification begins with a

percent sign (%).
3. Optional formatting characters may appear between the percent sign and ends

with a single conversion character in the following order:

[-][<FieldWidth>][.][<Precision>][h | l]

Table 4.3 Optional formatting characters

Character Description

-(minus sign)
FieldWidth

. (period)
Precision

h
l(letter ell)

Left justifies the converted argument.
Integer number that specifies the minimum field width for the converted
arguemnt. The argument will be displayed in a field at least this wide.
The displayed argument will be padded on the left or right if necessary.
Separates the field width from the precision.
Integer number that specifies the maximum number of characters to
display from a string or the minimum number of digits for an intger.
To have an integer displayed as a short.
To have an integer displayed as a long.

The Meaning of Optional Characters

Table 4.4 Printf() conversion characters

d, i
o
x
X
u
c
s
p
%

character Argument type; displayed as

int; signed decimal number
int; unsigned octal number (without a leading zero)
int; unsigned hex number using abcdef for 10...15
int; unsigned hex number using ABCDEF for 10...15
int; unsigned decimal number
int; single character
char *; display from the string until a '\0' (NULL)
void *; pointer (implementation-dependent representation)
no argument is converted; print a %

Formatting Characters Supported by the printf() function:

Example for outputting a message (Flight simulation):
CR equ $0D
LF equ $0A
printf equ $EE88

…
ldd #prompt
jsr [printf,PCR]
…

prompt db “Flight simulation”,CR,LF,0

Example for outputting three numbers m, n, and gcd along with a message:

CR equ $0D
LF equ $0A
printf equ $EE88

…
ldd gcd
pshd
ldd n
pshd
ldd m
pshd
ldd #prompt
jsr [printf,PCR]
leas 6,sp
…

prompt db “The greatest common divisor of %d and %d is %d”,CR,LF,0

int far GetCmdLine(char *CmdLineStr, int CmdLineLen)
Pointer address: $EE8A
Incoming parameters: a pointer to the buffer where the input string is to be stored

and the maximum number of characters that will be
accepted by this function.

Returned value: a string from the user (usually from the keyboard)

- This function is used to obtain a line of input from the user.
- The reception of an ASCII carriage return ($0D) terminates the reception of

characters from the user.
- The caller of this function normally would output a message so that the user

knows to enter a message. The example in the next page illustrates this
interaction.

printf equ $EE88
GetCmdLine equ $EE8A
cmdlinelen equ 100 ;no.of characters to accept
CR equ $0D
LF equ $0A

…
prompt db “Please enter a string: “,CR,LF,0

…
inbuf rmb 100

…
ldd #prompt ; output a prompt to remind the user to
jsr [printf,PCR] ; enter a string
ldd #cmdlinelen ; push the CmdLineLen
pshd ; “
ldd #inbuf ;address to store the string
call [GetCmdLine,PCR] ; read a string from the keyboard
puld ; clean up the stack

Example: GetCmdLine

	ECE3120: Computer Systems�Chapter 4: D-Bug12 Functions

