Quiz 2
 ECE-3120: Fall ‘08

1) Write an instruction sequence to add two 16 bit numbers stored at $\$ 2000-\$ 2001$ and \$2002~\$2003 and subtract the 16 bit number stored at $\$ 1000$ from the sum. Store the result in \$\$2100

org	$\$ 1000$	$;$ starting address of the program
ldd	$\$ 2000$	$; \mathrm{D} \leftarrow \mathrm{m}[\$ 2000]$
addd	$\$ 2002$	$; \mathrm{D} \leftarrow \mathrm{m}[\$ 2002]$
subd	$\$ 1000$	$; \mathrm{D} \leftarrow \mathrm{m}[\$ 1000]$
std	$\$ 2100$	$; \mathrm{D} \leftarrow \mathrm{m}[\$ 2100]$

2) Write a sequence of instructions to compute the sum of N signed 8 -bit numbers stored at memory locations $\$ 1000$ and store the result in $\$ 2000$

N	equ	5	;array count
	org	\$1000	;starting address of the array
array:	db	1,2,3,4,5	
	org	\$2000	;starting address of the array
$\begin{aligned} & \text { sum: } \\ & \text { i: } \end{aligned}$	rmb	1	;array sum assuming we need just 1 byte
	rmb	1	;array index
	org	\$1500	;starting address of the program
	ldaa	\#0	
	staa	i	;initialize loop (array) index to 0
	staa	sum	;initialize sum to 0
loop:	ldab	i	
	cmpb	\#N	;is $\mathrm{I}=\mathrm{N}$?
	beq	done	;if done, then branch
	ldx	\#array	;use index register X as a pointer to the array
	ldab	0,x	;place array[i] in B
	ldy	sum	;place sum in Y
	aby		;sum¢sum+array[i]
	sty	sum	;update sum
	inc	i	;increment loop counter by 1
	bra	loop	
done:	swi		;return to D-Bug12 monitor
	end		

3) Write a sequence of instruction to toggle the upper four bits of an 8-bit number stored at memory location $\$ 1000$. Also write instructions to clear the lower four bits of the same number [e.g:- $10101010 \rightarrow 01010000$]

Idaa	$\$ 1000$;D $\leftarrow m[\$ 1000]$, loading the number to be eora
$\# \$ F 0$;Tonipulated in D	
anda	$\# \$ F 0$;clears the lower 4 bits in A

Logic

Example: $A \leftarrow 10111100$

ldaa	$\$ 1000$;A $\leftarrow 10111100$
eora	$\# \$ F 0$;A XOR \$F0 $\rightarrow 10111100$
		$; \quad$ XOR $11110000 \rightarrow 01001100$

So after eora A $\leftarrow 01001100$ (finished toggle part)
anda \#\$F0 ;A AND \$F) $\rightarrow 01001100$
; AND $\rightarrow 11110000 \rightarrow 01000000$
So after anda $\mathrm{A} \leftarrow 01000000$ (finished clearing lower 4 bits)

