ECE3120: Computer Systems Chapter 7: Interfacing with O/P devices

Manjeera Jeedigunta http://blogs.cae.tntech.edu/msjeedigun21 Email: msjeedigun21@tntech.edu Tel: 931-372-6181, Prescott Hall 120

□ Prev

- Overview of Parallel Ports
- □ Today
 - Interfacing with LEDs
 - Interfacing with Seven-Segment Display

Interfacing with LED Devices

- □ Figure 7.29 suggests three methods for interfacing with LEDs.
- Circuit (a) and (b) are recommended for LEDs that need only small current to light.
- Circuit (c) is recommended for LEDs that need larger current to light.
- □ Port J, Pin 1 is used to enable LEDs in case of our demo board P_1

Figure 7.29 An LED connected to a CMOS inverter through a current-limiting resistor.

Example 7.3 Use Port B to drive eight LEDs using the circuit shown in Figure 7.30. Light each LED for half a second in turn and repeat assuming the HCS12 has a 24-MHz E clock.

Figure 7.30 Circuit connection for example 7.3

To turn on one LED at a time for half a second in turn, one should output the value \$80, \$40, \$20, \$10, \$08,\$04,\$02, and \$01 and stay on for half a second in each value.

The assembly program that performs the operation is as follows:

	#include	"C:\miniide\hcs12.inc"				
led_tab	dc.b	\$80,\$40,\$20,\$10,\$08,\$04,\$02,\$01				
	dc.b	\$01,\$02,\$04,\$08,\$10,\$20,\$40,\$80				
	org	\$1500				
	movb	#\$FF,DDRB	; configure port B for output			
	bset	DDRJ,\$02	; configure PJ1 pin for output			
	bclr	PTJ,\$02	; enable LEDs to light			
forever	Idaa	#16	; initialize loop count to 16			
	ldx	#led_tab	; use X as the pointer to LED pattern table			
led_lp	movb	1,x+,PTB	; turn on one LED			
	ldy	#5	; wait for half a second			
	jsr	delayby100ms	. II 2			
	dbne	a,led_lp	; reach the end of the table yet?			
	bra	forever	; start from beginning			
	#include	"C:\miniide\delay.asm"				
	end	•				

Driving a Single Seven-Segment Display

- □ A common cathode seven-segment display is driven by the 74HC244 via resistors.
- □ The output high voltage of the 74HC244 is close to 5V with a 5V power supply.
- □ The segment patterns for 0 to 9 are shown in Table 7.5.

Figure 7.31 Driving a single seven-segment display

BCD	Segments					Corresponding		
digit	a	b	c	d	e	f	g	Hex Number
0	1	1	1	1	1	1	0	\$7E
1	0	1	1	0	0	0	0	\$30
2	1	1	0	1	1	0	1	\$6D
3	1	1	1	1	0	0	1	\$79
4	0	1	1	0	0	1	1	\$33
5	1	0	1	1	0	1	1	\$5B
6	1	0	1	1	1	1	1	\$5F
7	1	1	1	0	0	0	0	\$70
8	1	1	1	1	1	1	1	\$7F
9	1	1	1	1	0	1	1	\$7B

Table 7.5 BCD to seven-segment decoder

Driving Multiple Seven-Segment Displays

- Time multiplexing technique is often used to drive multiple displays in order to save I/O pins.
- One parallel port is used to drive the segment pattern (B) and the other port turns on one display at a time (K).

Figure 7.32 Port B and Port K together drive six seven-segment displays (MC9S12DP256)

- **Example 7.4** Write a sequence of instructions to display **4** on the seven-segment display **#4** in Figure 7.32.
- **Solution:** To display the digit 4 on the display #4, we need to:
 - Output the hex value \$33 to port B
 - Set the PK4 pin to 1
 - Clear pins PK5 and PK3...P0 to 0

	#includ	e <hcs12.inc></hcs12.inc>	
four	equ	\$33	; seven-segment pattern of digit 4
	movb	#\$3F,DDRK	; configure PORT K for output
	movb	#\$FF,DDRB	; configure PORT B for output
	bset	PTK,\$10	; turn on seven-segment display #4
	bclr	PTK,\$2F	; turn off seven-segment displays #5, #3#0
	movb	#four.PTB	: output the seven-segment pattern to PORTP

- Example 7.5 Write a program to display 123456 on the six seven-segment displays shown in Figure 7.32.
- Solution: Display 123456 on display #5, #4, #3, #2, #1, and #0, respectively.
- □ The values to be output to Port B and Port K to display one digit at a time is shown in Table 7.6.

seven-segment display	displayed BCD digit	PortB	PortK
#5	1	\$30	\$20
#4	2	\$6D	\$10
#3	3	\$79	\$08
#2	4	\$33	\$04
#1	5	\$5B	\$02
#0	6	\$5E	\$01

Table 7.6 Table of display patterns for Example 7.5

- The program logic is shown in Figure 7.33.

Figure 7.33 Time-multiplexed seven-segment display algorithm

	#include	"c:\miniide\hcs12	.inc"
pat_port	equ	PTB	; Port that drives the segment pattern
pat_dir	equ	DDRB	; direction register of the segment pattern
sel_port	equ	PTK	; Port that selects the digit
sel_dir	equ	DDRK	; data direction register of the digit select port
	org	\$1500	
	movb	#\$FF,pat_dir	; configure pattern port for output
	movb	#\$3F,sel_dir	; configure digit select port for output
forever	ldx	#disp_tab	; use X as the pointer
loop	movb	1,x+,pat_port	; output digit pattern and move the pointer
	movb	1,x+,sel_port	; output digit select value and move the pointer
	ldy	#1	; wait for 1 ms
	jsr	delayby1ms	- "' 7
	срх	#disp_tab+12	; reach the end of the table
	bne	loop	
	bra	forever	
	#include	"c:\miniide\delay.	asm"
disp_tab	dc.b	\$30,\$20	; seven-segment display table
	dc.b	\$6D,\$10	
	dc.b	\$79,\$08	
	dc.b	\$33,\$04	
	dc.b	\$5B,\$02	
	dc.b	\$5F,\$01	
	end		

Next...

- □ Interfacing to LCD
- □ Read Chapter 7.6