
ECE3120: Computer Systems
Chapter 7: Interfacing with I/P

Devices

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Prev
Interfacing with Switches

Today
Interfacing with Keypad

Interfacing to a Keyboard
A keyboard is arranged as an array of switches,

mechanical
membrane
capacitors
Hall-effect in construction.

Mechanical switches are most popular for keyboards.
Mechanical switches have a problem called contact bounce.
Closing a mechanical switch generates a series of pulses because
the switch contacts do not come to rest immediately.
In addition, a human cannot type more than 50 keys in a second.
Reading the keyboard more than 50 times a second will read the
same key stroke too many times.

Keypad Input Process
• A keyboard input is divided into three steps:

• Scan the keyboard to discover which key has
been pressed

• Debounce the keyboard to determine if a key is
indeed pressed. Both hardware and software
approaches for key debouncing are available.

• Lookup the ASCII table to find out the ASCII
code of the pressed key.

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

10KΩ

VCC

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

HCS12 MCU

Figure 7.41 Sixteen-key keypad connected to the HCS12

PA7 PA6 PA5 PA4 Selected keys

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

0,
4,
8,
C,

1,
5,
9,
D,

2,
6,
A,
E,

and 3
and 7
and B
and F

Table 7.16 Sixteen-key keypad row selections

PA7~PA4 O/P, Row selection, row being [(0,1,2,3),(4,5,6,7)..]

Row being scanned is driven low either one of PA7~PA4=0

PA3~PA0 I/P, Decide which key is pressed
Initially High , when pressed the corr row and column will be shorted
When pressed the corresponding PA Pin would be low

r0 r1 r2 r3

c0

c1
c2
c3

Keypad Scanning

VDD

Set

Reset

R

R

Q

Reset Set

Q

(a) Set-reset latch

4050

R

Vout

VDD

(b) CMOS gate debouncer

VDD

Vout

H

L

Threshold level

Switch closed

(c) Integrating RC circuit debouncer

Figure 7.42 Hardware debouncing techniques

R

C

Hardware Debouncing Techniques

SR latches
Non-inverting CMOS
gates
Integrating debouncer

Debouncer will recognize that the switch
is closed after the voltage is low for
around 10ms and that the switch is open
after the voltage is high for about 10 ms

Software Debouncing Technique
The most popular and simple one has been the
wait and see method.

In this method, the program simply waits for
about 10 ms and reexamines the same key again
to see if it is still pressed.

#include “c:\miniide\hcs12.inc"
keyboard equ PTA

get_char movb #$F0,DDRA ; set PA7~PA4 for output, PA3~PA0 for input
scan_r0 movb #$EF,keyboard ; scan the row containing keys 0123
scan_k0 brclr keyboard,$01,key0 ; is key 0 pressed?
scan_k1 brclr keyboard,$02,key1 ; is key 1 pressed?
scan_k2 brclr keyboard,$04,key2 ; is key 2 pressed?
scan_k3 brclr keyboard,$08,key3 ; is key 3 pressed?

bra scan_r1
key0 jmp db_key0
key1 jmp db_key1

Example 7.10 Write a program to perform keypad
scanning, debouncing, and returns the ASCII code in
accumulator A to the caller.
Solution

Pins PA4..PA7 each control one row of four keys.
Scanning is performed by setting one of the PA7…PA4 pins to
low, the other three pins to high and testing one key at a time.

key2 jmp db_key2
key3 jmp db_key3
scan_r1 movb #$DF,keyboard ; scan the row containing keys 4567
scan_k4 brclr keyboard,$01,key4 ; is key 4 pressed?
scan_k5 brclr keyboard,$02,key5 ; is key 5 pressed?
scan_k6 brclr keyboard,$04,key6 ; is key 6 pressed?
scan_k7 brclr keyboard,$08,key7 ; is key 7 pressed?

bra scan_r2
key4 jmp db_key4
key5 jmp db_key5
key6 jmp db_key6
key7 jmp db_key7
scan_r2 movb #$BF,keyboard ; scan the row containing keys 89AB

bclr keyboard,$40 ; “
scan_k8 brclr keyboard,$01,key8 ; is key 8 pressed?
scan_k9 brclr keyboard,$02,key9 ; is key 9 pressed?
scan_kA brclr keyboard,$04,keyA ; is key A pressed?
scan_kB brclr keyboard,$08,keyB ; is key B pressed?

bra scan_r3
key8 jmp db_key8
key9 jmp db_key9

keyA jmp db_keyA
keyB jmp db_keyB
scan_r3 movb #$7F,keyboard ; scan the row containing keys CDEF
scan_kC brclr keyboard,$01,keyC ; is key C pressed?
scan_kD brclr keyboard,$02,keyD ; is key D pressed?
scan_kE brclr keyboard,$04,keyE ; is key E pressed?
scan_kF brclr keyboard,$08,keyF ; is key F pressed?

jmp scan_r0
keyC jmp db_keyC
keyD jmp db_keyD
keyE jmp db_keyE
keyF jmp db_keyF
; debounce key 0
db_key0 jsr delay10ms

brclr keyboard,$01,getc0
jmp scan_k1

getc0 ldaa #$30 ; return the ASCII code of 0
rts

; debounce key 1

db_key1 jsr delay10ms
brclr keyboard,$02,getc1
jmp scan_k2

getc1 ldaa #$31 ; return the ASCII code of 1
rts

db_key2 jsr delay10ms
brclr keyboard,$04,getc2
jmp scan_k3

getc2 ldaa #$32 ; return the ASCII code of 2
rts

db_key3 jsr delay10ms
brclr keyboard,$08,getc3
jmp scan_r1

getc3 ldaa #$33 ; return the ASCII code of 3
rts

db_key4 jsr delay10ms
brclr keyboard,$01,getc4

jmp scan_k5
getc4 ldaa #$34 ; return the ASCII code of 4

rts
db_key5 jsr delay10ms

brclr keyboard,$02,getc5
jmp scan_k6

getc5 ldaa #$35 ; return the ASCII code of 5
rts

db_key6 jsr delay10ms
brclr keyboard,$04,getc6
jmp scan_k7

getc6 ldaa #$36 ; return the ASCII code of 6
rts

db_key7 jsr delay10ms
brclr keyboard,$08,getc7
jmp scan_r2

getc7 ldaa #$37 ; return the ASCII code of 7
rts

db_key8 jsr delay10ms
brclr keyboard,$01,getc8
jmp scan_k9

getc8 ldaa #$38 ; return the ASCII code of 8
rts

db_key9 jsr delay10ms
brclr keyboard,$02,getc9
jmp scan_kA

getc9 ldaa #$39 ; return the ASCII code of 9
rts

db_keyA jsr delay10ms
brclr keyboard,$04,getcA
jmp scan_kB

getcA ldaa #$41 ; get the ASCII code of A
rts

db_keyB jsr delay10ms
brclr keyboard,$08,getcB
jmp scan_r3

getcB ldaa #$42 ; get the ASCII code of B
rts

db_keyC jsr delay10ms
brclr keyboard,$01,getcC
jmp scan_kD

getcC ldaa #$43 ; get the ASCII code of C
rts

db_keyD jsr delay10ms
brclr keyboard,$02,getcD
jmp scan_kE

getcD ldaa #$44 ; get the ASCII code of D
rts

db_keyE jsr delay10ms
brclr keyboard,$04,getcE
jmp scan_kF

getcE ldaa #$45 ; get the ASCII code of E
rts

db_keyF jsr delay10ms
brclr keyboard,$08,getcF
jmp scan_r0

getcF ldaa #$46 ; get the ASCII code of F
rts

delay10ms movb #$90,TSCR1 ; enable TCNT & fast flags clear
movb #$06,TSCR2 ; configure prescale factor to 64
movb #$01,TIOS ; enable OC0
ldd TCNT
addd #3750 ; start an output compare operation
std TC0 ; with 10 ms time delay

wait_lp2 brclr TFLG1,$01,wait_lp2
rts

Next…
Interfacing with LCD
Time-Multiplexing
Class in BN 320 on Friday Nov 7th
Read Chapter 7.6

	ECE3120: Computer Systems�Chapter 7: Interfacing with I/P �Devices
	Interfacing to a Keyboard
	Keypad Input Process
	Keypad Scanning
	Hardware Debouncing Techniques
	Software Debouncing Technique
	Next…

