ECE 3120: Computer Systems Chapter 8: Output Compare Function

Manjeera Jeedigunta http://blogs.cae.tntech.edu/msjeedigun21 Email: msjeedigun21@tntech.edu Tel: 931-372-6181, Prescott Hall 120

Output Compare Function

- □ The HCS12 has eight output compare functions.
- □ Each output compare channel consists of
 - A 16-bit comparator
 - A 16-bit compare register TCx (also used as inout capture register)
 - An output action pin (PTx, can be pulled high, pulled low, or toggled)
 - An interrupt request circuit
 - A forced-compare function (CFOCx)
 - Control logic

Operation of the Output-Compare Function

- One of the applications of the output-compare function is to trigger an action at a specific time in the future.
- □ To use an output-compare function, the user
 - Makes a copy of the current contents of the TCNT register
 - Adds to this copy a value equal to the desired delay
 - Stores the sum into an output-compare register (TCx, x = 0..7)
- □ The actions that can be activated on an output compare pin include:
 - Pull up to high
 - Pull down to low
 - Toggle

Operation of the Output-Compare Function

- □ The action is determined by the Timer Control Register 1 & 2 (TCTL1 & TCTL2):
- □ A successful compare will set the corresponding flag bit in the TFLG1 register.
- □ An interrupt may be optionally requested if the associated interrupt enable bit in the TIE register is set.

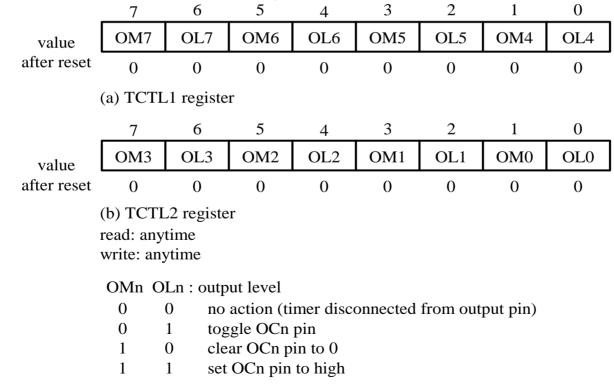


Figure 8.18 Timer control register 1 and 2 (TCTL1 & TCTL2)

Operation of the Output-Compare Function

Example 8.4 Generate an active high 1 KHz digital waveform with 30 percent duty cycle from the PT0 pin. Use the polling method to check the success of the output compare operation. The frequency of the E clock is 24 MHz.

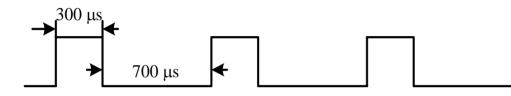


Figure 8.19 1 KHz 30 percent duty cycle waveform

Solution: An active high 1 KHz waveform with 30 percent duty cycle is shown in Figure 8.19. The logic flow of this problem is illustrated in Figure 8.20.

Setting the prescaler to the TCNT to 8, then the period of the clock signal to the TCNT will be 1/3 µs. The numbers of clock cycles that the signal is high and low are 900 and 2100, respectively.

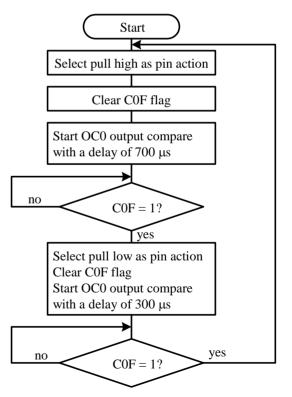


Figure 8.20 The program logic flow for digital waveform gergeration

Generating 1 KHz Digital Waveform

#include	"c:\miniide\hcs12.inc"				
hi_time	equ	900			
lo_time	equ	2100			
	org	\$1500			
	movb	#\$90,TSCR1	; enable TCNT with fast timer flag clear		
	movb	#\$03,TSCR2	; disable TCNT interrupt, set prescaler to 8		
	bset	TIOS,OC0	; enable OC0		
	movb	#\$03,TCTL2	; select pull high as pin action		
	ldd	TCNT	; start an OC0 operation with 700 us as delay		
repeat	addd	#lo_time	- II 7		
	std	TC0	- II 7		
low	brclr	TFLG1,C0F,low	; wait until OC0 pin go high		
	movb	#\$02,TCTL2	; select pull low as pin action		
	ldd	TC0	; start an OC operation with 300 us as delay		
	addd	#hi_time	- II 7		
	std	TC0	- II 7		
high	brclr	TFLG1,C0F,high	; wait until OC0 pin go low		
	movb	#\$03,TCTL2	; select pull high as pin action		
	ldd	TC0			
	bra	repeat			
	end				

- Example 8.5 Write a function to generate a time delay which is a multiple of 1 ms. Assume that the E clock frequency is 24 MHz.
 The number of milliseconds is passed in Y.
- □ Solution: One method to create 1 ms delay is as follows:
 - Set the prescaler to TCNT to 64
 - Perform the number of output-compare operations (given in Y) with each operation creating a 1-ms time delay.
 - The number to be added to the copy of TCNT is 375. $(375 \times 64 \div 24000000 = 1 \text{ ms})$

delayby1ms	pshd		
	movb	#\$90,TSCR1	; enable TCNT & fast flags clear
	movb	#\$06,TSCR2	; configure prescaler to 64
	bset	TIOS,OC0	; enable OC0
	ldd	TCNT	
again0	addd	#375	; start an output-compare operation
	std	TC0	; with 1 ms time delay
wait_lp0	brclr	TFLG1,COF,wa	lit_lp0
-	ldd	TC0	
	dbne	y,again0	
	puld		
	rts		

Example 8.6 Use an input-capture and an output-compare functions to measure the frequency of the signal connected to the PT0 pin.

- **Solution:** To measure the frequency, we will
 - Use one of the output-compare function to create a one-second time base.
 - Keep track of the number of rising (or falling) edges that arrived at the PT0 pin within one second.

		iIDE\hcs12.inc"	
CR	equ	\$0D	
LF	equ	\$0A	
	org	\$1000	
oc_cnt	rmb	1	
frequencyrmb		2	
	org	\$1500	
	movb	#\$90,TSCR1	; enable TCNT and fast timer flags clear
	movb	#\$02,TSCR2	; set prescale factor to 4
	movb	#\$02,TIOS	; enable OC1 and IC0
	movb	#100,oc_cnt	; prepare to perform 100 OC1 operation, each
			; creates 10 ms delay and total 1 second
	movw	#0,frequency	; initialize frequency count to 0
	movb	#\$01,TCTL4	; prepare to capture the rising edges of PT0
	movb	#C0F,TFLG1	; clear the C0F flag
	bset	TIE,IC0	; enable IC0 interrupt
	cli	,	
			,

continue w_lp	ldd addd std brclr ldd dec bne ldd pshd ldd jsr leas swi	TCNT #60000 TC1 TFLG1,C1F,w_lp TC1 oc_cnt continue frequency #msg [printf,PCR] 2,sp	; start an OC1 operation with 10 ms delay "" ; "; ; wait for 10 ms	
msg	db	CR,LF,"The frequ	uency is %d",CR,LF,0	
TC0_isr	ldd	TC0	; clear C0F flag	
	ldx inx	frequency	; increment frequency count by 1 ; "	
	stx rti	frequency	;	
	org	\$3E6E	; set up interrupt vector number	
	fdb end	TC0_isr	; for TC0	9