
ECE 3120: Computer Systems
Chapter 8: ECE-3120-A Musical

Manjeera Jeedigunta
http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Output Compare Function
The HCS12 has eight output compare functions.
Each output compare channel consists of

A 16-bit comparator
A 16-bit compare register TCx (also used as inout capture
register)
An output action pin (PTx, can be pulled high, pulled low,
or toggled)
An interrupt request circuit
A forced-compare function (CFOCx)
Control logic

2

Operation of the Output-Compare Function
One of the applications of the output-compare function
is to trigger an action at a specific time in the future.
To use an output-compare function, the user

Makes a copy of the current contents of the TCNT register
Adds to this copy a value equal to the desired delay
Stores the sum into an output-compare register (TCx, x =
0..7)

The actions that can be activated on an output
compare pin include:

Pull up to high
Pull down to low
Toggle

3

7 6 5 4 3 2 1 0

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4value
after reset 0 0 0 0 0 0 0 0

read: anytime
write: anytime

Figure 8.18 Timer control register 1 and 2 (TCTL1 & TCTL2)

7 6 5 4 3 2 1 0

OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

0 0 0 0 0 0 0 0

(a) TCTL1 register

(b) TCTL2 register

value
after reset

OMn OLn : output level
0
0
1
1

0
1
0
1

no action (timer disconnected from output pin)
toggle OCn pin
clear OCn pin to 0
set OCn pin to high

The action is determined by the Timer Control Register 1 & 2 (TCTL1
& TCTL2):
A successful compare will set the corresponding flag bit in the TFLG1
register.
An interrupt may be optionally requested if the associated interrupt
enable bit in the TIE register is set.

4

Operation of the Output-Compare Function

HCS12DP256

PT5

3.3 μF

Buzzer

Figure 8.21 Circuit connection for a buzzer

Making Sound Using the Output-Compare Function

A sound can be generated by creating a digital waveform with
appropriate frequency and using it to drive a speaker or a
buzzer.
The circuit connection for a buzzer is shown in Figure 8.21.
The simplest song is a two-tone siren.

5

Algorithm for Generating a Siren
Step 1

Enable an output compare channel to drive the buzzer (or speaker).
Step 2

Start an output compare operation with a delay count equal to half the period of the
siren and enable the OC interrupt.

Step 3
Wait for the duration of the siren tone (say half a second). During the waiting period,
interrupts will be requested many times by the output compare function. The interrupt
service routine simply restart the output compare operation.

Step 4
At the end of the siren tone duration, choose a different delay count for the output
compare operation so that the siren sound may have a different frequency.

Step 5
Wait for the same duration as in Step 3. During this period, many interrupts will be
requested by the output compare operation.

Step 6
Go to Step 2.

6

#include "c:\miniide\hcs12.inc"
hi_freq equ 1250 ; delay count for 1200 Hz (with 1:8 prescaler)
lo_freq equ 5000 ; delay count for 300 Hz (with 1:8 prescaler)
toggle equ $04 ; value to toggle the TC5 pin

org $1000
delay ds.w 1 ; store the delay for output-compare operation

org $1500
lds #$1500
movw #oc5_isr,UserTimerCh5 ; initialize the interrupt vector entry
movb #$90,TSCR1 ; enable TCNT, fast timer flag clear
movb #$03,TSCR2 ; set main timer prescaler to 8

Example 8.7 Write a program to generate a two-tone siren
that oscillates between 300 Hz and 1200 Hz.
Solution:

Set the prescaler to TCNT to 1:8.
The delay count for the low frequency tone is (24000000 ÷ 8) ÷ 300 ÷
2 = 5000.
The delay count for the high frequency tone is (24000000 ÷ 8) ÷ 1200
÷ 2 = 1250.

7

bset TIOS,OC5 ; enable OC5
movb #toggle,TCTL1 ; select toggle for OC5 pin action
movw #hi_freq,delay ; use high frequency delay count first
ldd TCNT ; start the low frequency sound
addd delay ; "
std TC5 ; "
bset TIE,OC5 ; enable OC5 interrupt
cli ; "

forever ldy #5 ; wait for half a second
jsr delayby100ms ; "
movw #lo_freq,delay ; switch to low frequency delay count
ldy #5
jsr delayby100ms
movw #hi_freq,delay ; switch to high frequency delay count
bra forever

oc5_isr ldd TC5
addd delay
std TC5
rti

#include c:\miniide\delay.asm”
end

8

Playing Songs Using the OC Function
Place the frequencies and durations of all
notes in a table.
For every note, use the output-compare
function to generate the digital waveform with
the specified frequency and duration.
The next example plays the US national
anthem.

9

#include "c:\miniide\hcs12.inc"
G3 equ 7653 ; delay count to generate G3 note (with 1:8 prescaler)
B3 equ 6074 ; delay count to generate B3 note (with 1:8 prescaler)
C4 equ 5733 ; delay count to generate C4 note (with 1:8 prescaler)
C4S equ 5412 ; delay count to generate C4S (sharp) note
D4 equ 5108 ; delay count to generate D4 note (with 1:8 prescaler)
E4 equ 4551 ; delay count to generate E4 note (with 1:8 prescaler)
F4 equ 4295 ; delay count to generate F4 note (with 1:8 prescaler)
F4S equ 4054 ; delay count to generate F4S note (with 1:8 prescaler)
G4 equ 3827 ; delay count to generate G4 note (with 1:8 prescaler)
A4 equ 3409 ; delay count to generate A4 note (with 1:8 prescaler)
B4F equ 3218 ; delay count to generate B4F note (with 1:8 prescaler)
B4 equ 3037 ; delay count to generate B4 note (with 1:8 prescaler)
C5 equ 2867 ; delay count to generate C5 note (with 1:8 prescaler)
D5 equ 2554 ; delay count to generate D5 note (with 1:8 prescaler)
E5 equ 2275 ; delay count to generate E5 note (with 1:8 prescaler)
F5 equ 2148 ; delay count to generate F5 note (with 1:8 prescaler)
notes equ 101
toggle equ $04 ; value to toggle the TC5 pin 10

The Star-Spangled Banner

org $1000
delay ds.w 1 ; store the delay for output-compare operation
rep_cnt ds.b 1 ; repeat the song this many times
ip ds.b 1 ; remaining notes to be played

org $1500
lds #$1500

; establish the SRAM vector address for OC5
movw #oc5_isr,UserTimerCh5
movb #$90,TSCR1 ; enable TCNT, fast timer flag clear
movb #$03,TSCR2 ; set main timer prescaler to 8
bset TIOS,OC5 ; enable OC5
movb #toggle,tctl1 ; select toggle for OC5 pin action
ldx #score ; use as a pointer to score table
ldy #duration ; points to duration table
movb #1,rep_cnt ; play the song once
movb #notes,ip
movw 2,x+,delay ; start with zeroth note
ldd TCNT ; play the first note
addd delay ; "
std TC5 ; "
bset TIE,C5I ; enable OC5 interrupt
cli ; "

11

forever pshy ; save duration table pointer in stack
ldy 0,y ; get the duration of the current note
jsr delayby10ms ; "
puly ; get the duration pointer from stack
iny ; move the duration pointer
iny ; "
ldd 2,x+ ; get the next note, move pointer
std delay ; "
dec ip
bne forever
dec rep_cnt
beq done ; if not finish playing, re-establish
ldx #score ; pointers and loop count
ldy #duration ; "
movb #notes,ip ; "
movw 0,x,delay ; get the first note delay count
ldd TCNT ; play the first note
addd #delay ; "
std TC5
bra forever

done swi
12

oc5_isr ldd TC5
addd delay
std TC5
rti

; **
; The following subroutine creates a time delay which is equal to [Y] times
; 10 ms. The timer prescaler is 1:8.
; **
delayby10ms

bset TIOS,OC0 ; enable OC0
ldd TCNT

again1 addd #30000 ; start an output-compare operation
std TC0 ; with 10 ms time delay

wait_lp1 brclr TFLG1,C0F,wait_lp1
ldd TC0
dbne y,again1
bclr TIOS,OC0 ; disable OC0
rts

13

score dw D4,B3,G3,B3,D4,G4,B4,A4,G4,B3,C4S
dw D4,D4,D4,B4,A4,G4,F4S,E4,F4S,G4,G4,D4,B3,G3
dw D4,B3,G3,B3,D4,G4,B4,A4,G4,B3,C4S,D4,D4,D4
dw B4,A4,G4,F4S,E4,F4S,G4,G4,D4,B3,G3,B4,B4
dw B4,C5,D5,D5,C5,B4,A4,B4,C5,C5,C5,B4,A4,G4
dw F4S,E4,F4S,G4,B3,C4S,D4,D4,G4,G4,G4,F4S
dw E4,E4,E4,A4,C5,B4,A4,G4,G4,F4S,D4,D4
dw G4,A4,B4,C5,D5,G4,A4,B4,C5,A4,G4

; **
; Each of the following entries multiplied by 10 ms gives the duration of a note.
; **
duration dw 30,10,40,40,40,80,30,10,40,40,40

dw 80,20,20,60,20,40,80,20,20,40,40,40,40,40
dw 30,10,40,40,40,80,30,10,40,40,40,80,20,20
dw 60,20,40,80,20,20,40,40,40,40,40,20,20
dw 40,40,40,80,20,20,40,40,40,80,40,60,20,40
dw 80,20,20,40,40,40,80,40,40,40,20,20
dw 40,40,40,40,20,20,20,20,40,40,20,20
dw 60,20,20,20,80,20,20,60,20,40,80
end 14

	ECE 3120: Computer Systems�Chapter 8: ECE-3120-A Musical
	Output Compare Function
	Operation of the Output-Compare Function
	Operation of the Output-Compare Function
	Making Sound Using the Output-Compare Function
	Algorithm for Generating a Siren
	Playing Songs Using the OC Function

