ECE 3120: Computer Systems Chapter 8: ECE-3120-A Musical

Manjeera Jeedigunta http://blogs.cae.tntech.edu/msjeedigun21

Email: msjeedigun21@tntech.edu
Tel: 931-372-6181, Prescott Hall 120

Output Compare Function

- The HCS12 has eight output compare functions.
\square Each output compare channel consists of
- A 16-bit comparator
- A 16-bit compare register TCx (also used as inout capture register)
- An output action pin (PTx, can be pulled high, pulled low, or toggled)
- An interrupt request circuit
- A forced-compare function (CFOCx)
- Control logic

Operation of the Output-Compare Function

\square One of the applications of the output-compare function is to trigger an action at a specific time in the future.

- To use an output-compare function, the user
- Makes a copy of the current contents of the TCNT register
- Adds to this copy a value equal to the desired delay
- Stores the sum into an output-compare register (TCx, $\mathrm{x}=$ 0..7)
\square The actions that can be activated on an output compare pin include:
- Pull up to high
- Pull down to low
- Toggle

Operation of the Output-Compare Function

ㅁ The action is determined by the Timer Control Register $1 \& 2$ (TCTL1 \& TCTL2):
ㅁ A successful compare will set the corresponding flag bit in the TFLG1 register.
$\square \quad$ An interrupt may be optionally requested if the associated interrupt enable bit in the TIE register is set.

	7		6	5	4	3	2	1
	value							
	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
	Ofter reset	0	0	0	0	0	0	0

(a) TCTL1 register

	7	6	5	4	3	2	1	0
value	OM3	OL3	OM2	OL2	OM1	OL1	OM0	OL0
after reset	0	0	0	0	0	0	0	0

(b) TCTL2 register
read: anytime
write: anytime

OMn	OLn : output level	
0	0	no action (timer disconnected from output pin)
0	1	toggle OCn pin
1	0	clear OCn pin to 0
1	1	set OCn pin to high

Making Sound Using the Output-Compare Function

- A sound can be generated by creating a digital waveform with appropriate frequency and using it to drive a speaker or a buzzer.
- The circuit connection for a buzzer is shown in Figure 8.21.
- The simplest song is a two-tone siren.

Figure 8.21 Circuit connection for a buzzer

Algorithm for Generating a Siren

- Step 1
- Enable an output compare channel to drive the buzzer (or speaker).
- Step 2
- Start an output compare operation with a delay count equal to half the period of the siren and enable the OC interrupt.
- Step 3
- Wait for the duration of the siren tone (say half a second). During the waiting period, interrupts will be requested many times by the output compare function. The interrupt service routine simply restart the output compare operation.
$\square \quad$ Step 4
- At the end of the siren tone duration, choose a different delay count for the output compare operation so that the siren sound may have a different frequency.
- Step 5
- Wait for the same duration as in Step 3. During this period, many interrupts will be requested by the output compare operation.
- Step 6
- Go to Step 2.
- Example 8.7 Write a program to generate a two-tone siren that oscillates between 300 Hz and 1200 Hz .
- Solution:
- Set the prescaler to TCNT to 1:8.
- The delay count for the low frequency tone is $(24000000 \div 8) \div 300 \div$ $2=5000$.
- The delay count for the high frequency tone is $(24000000 \div 8) \div 1200$ $\div 2=1250$.
\#include
hi_freq equ 1250
lo_freq equ 5000
toggle equ \$04
org $\$ 1000$
delay ds.w 1 org \$1500
Ids \#\$1500
movw \#oc5_isr,UserTimerCh5 ; initialize the interrupt vector entry movb \#\$90,TSCR1 ; enable TCNT, fast timer flag clear movb \#\$03,TSCR2 ; set main timer prescaler to 8

```
bset TIOS,OC5 ; enable OC5
movb #toggle,TCTL1 ; select toggle for OC5 pin action
movw #hi_freq,delay ; use high frequency delay count first
Idd TCNT ; start the low frequency sound
addd delay ; "
std TC5 ; "
bset TIE,OC5 ; enable OC5 interrupt
cli ; "
forever Idy #5 ; wait for half a second
jsr delayby100ms ; "
movw #lo_freq,delay; switch to low frequency delay count
ldy #5
jsr delayby100ms
movw #hi_freq,delay; switch to high frequency delay count
bra forever
    addd delay
std TC5
rti
#include c:Iminiide\delay.asm"
oc5_isr Idd TC5

\section*{Playing Songs Using the OC Function}
- Place the frequencies and durations of all notes in a table.
\(\square\) For every note, use the output-compare function to generate the digital waveform with the specified frequency and duration.
- The next example plays the US national anthem.

\section*{The Star-Spangled Banner}
\#include
G3 equ
B3 equ
C4 equ
"c:\miniide\hcs12.inc"
7653 ; delay count to generate G3 note (with 1:8 prescaler) 6074 ; delay count to generate B3 note (with 1:8 prescaler) 5733 ; delay count to generate C4 note (with 1:8 prescaler) 5412 ; delay count to generate C4S (sharp) note
D4 equ
E4 equ
F4 equ
G4 equ
B4F equ
B4 equ
\begin{tabular}{ll} 
C5 & equ \\
D5 & equ
\end{tabular}
E5 equ
\begin{tabular}{ll} 
F5 & equ \\
notes & equ
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & org & \$1000 & \\
\hline \multirow[t]{21}{*}{delay rep_cnt ip} & ds.w & 1 ; & ; store the delay for output-compare operation \\
\hline & ds.b & 1 ; & ; repeat the song this many times \\
\hline & ds.b & 1 ; & ; remaining notes to be played \\
\hline & org & \$1500 & \\
\hline & Ids & \#\$1500 & \\
\hline & h the SR & RAM vector ad & address for OC5 \\
\hline & movw & \#oc5_isr,User & erTimerCh5 \\
\hline & movb & \#\$90,TSCR1 & 1 ; enable TCNT, fast timer flag clear \\
\hline & movb & \#\$03,TSCR2 & ; set main timer prescaler to 8 \\
\hline & bset & TIOS,OC5 & ; enable OC5 \\
\hline & movb & \#toggle,tctl1 & ; select toggle for OC5 pin action \\
\hline & ldx & \#score ; & ; use as a pointer to score table \\
\hline & Idy & \#duration ; & ; points to duration table \\
\hline & movb & \#1,rep_cnt ; & ; play the song once \\
\hline & movb & \#notes,ip & \\
\hline & movw & 2,x+,delay ; & ; start with zeroth note \\
\hline & Idd & TCNT & ; play the first note \\
\hline & addd & delay & \\
\hline & std & TC5 ; & ; \\
\hline & bset & TIE,C5I ; & ; enable OC5 interrupt \\
\hline & cli & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
forever & \begin{tabular}{ll} 
pshy \\
ldy
\end{tabular} & \begin{tabular}{l} 
0,y save duration table pointer in stack \\
jsr \\
delayby10ms
\end{tabular} \\
puly & & get the duration of the current note
\end{tabular}
```

oc5_isr Idd TC5
addd delay
std TC5
rti

```

; The following subroutine creates a time delay which is equal to [Y] times ; 10 ms . The timer prescaler is 1:8.

delayby10ms
bset TIOS,OC0 ; enable OC0 Idd TCNT
again1 addd \#30000 ; start an output-compare operation std TC0 ; with 10 ms time delay
wait_lp1 brclr TFLG1,C0F,wait_lp1
Idd TCO
dbne y,again1
bclr TIOS,OC0 ; disable OC0 rts
```

score dw D4,B3,G3,B3,D4,G4,B4,A4,G4,B3,C4S
dw D4,D4,D4,B4,A4,G4,F4S,E4,F4S,G4,G4,D4,B3,G3
dw D4,B3,G3,B3,D4,G4,B4,A4,G4,B3,C4S,D4,D4,D4
dw B4,A4,G4,F4S,E4,F4S,G4,G4,D4,B3,G3,B4,B4
dw B4,C5,D5,D5,C5,B4,A4,B4,C5,C5,C5,B4,A4,G4
dw F4S,E4,F4S,G4,B3,C4S,D4,D4,G4,G4,G4,F4S
dw E4,E4,E4,A4,C5,B4,A4,G4,G4,F4S,D4,D4
dw G4,A4,B4,C5,D5,G4,A4,B4,C5,A4,G4

```
; Each of the following entries multiplied by 10 ms gives the duration of a note.
\begin{tabular}{cl}
; ********************************************************************** \\
duration dw & \(30,10,40,40,40,80,30,10,40,40,40\) \\
\(d w\) & \(80,20,20,60,20,40,80,20,20,40,40,40,40,40\) \\
\(d w\) & \(30,10,40,40,40,80,30,10,40,40,40,80,20,20\) \\
\(d w\) & \(60,20,40,80,20,20,40,40,40,40,40,20,20\) \\
\(d w\) & \(40,40,40,80,20,20,40,40,40,80,40,60,20,40\) \\
dw & \(80,20,20,40,40,40,80,40,40,40,20,20\) \\
dw & \(40,40,40,40,20,20,20,20,40,40,20,20\) \\
dw & \(60,20,20,20,80,20,20,60,20,40,80\)
\end{tabular}```

